PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | 35 |

Tytuł artykułu

Comparative study of the properties of yellow and brown Cyperus esculentus L.

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present research accounts for the physicochemical and phytochemical characteristics of yellow and brown Cyperus esculentus, which were subjected to standard chemical and biochemical analysis. The results obtained from the analysis of yellow tiger nut showed the following phytochemical properties: anthocyanin 0.82 ± 0.02 μg/ml, oxalate 1.43 ± 0.05 μg/ml, tannin 12.22 ± 0.10 μg/ml, rutin 39.19 ± 0.29 μg/ml, phenol 10.94 ± 0.05 μg/ml, lunamarine 38.99 ± 0.07 μg/ml, saponin 44.67 ± 0.15 μg/ml, ribalinidine 1.35 ± 0.03 μg/ml, phytate 0.33 ± 0.01 μg/ml, catechin 48.29 ± 0.04 μg/ml, and kaempferol 38.59 ± 0.02 μg/ml. The brown tiger nut showed the presence of the phytochemicals with values as: anthocyanin 0.01 ± 0.00 μg/ml, oxalate 2.66 ± 0.02 μg/ml, tannin 12.67 ± 0.04 μg/ml, rutin 43.99 ± 0.05 μg/ml, phenol 11.02 ± 0.10 μg/ml, lunamarine 39.66 ± 0.03 μg/ml, saponin 47.79 ± .06 μg/ml, ribalinidine 1.21 ± 0.04 μg/ml, phytate 0.28 ± 0.03 μg/ml, catechin 46.77 ± 0.05 μg/ml, and kaempferol 38.34 ± 0.15 μg/ml. The observed level of mineral elements in the tiger nut is in the increasing order of zinc > sodium > iron > copper > calcium > magnesium > potassium for yellow tiger nut, and for brown tiger nut the order is zinc > sodium > iron > copper > calcium > magnesium > potassium. The values of physical and chemical properties recorded for yellow tiger nut is in the increasing order of moisture > ash content > crude protein > crude fiber > crude fat > carbohydrate, the increasing order for brown tiger nut shows ash content > moisture > crude protein > crude fiber > crude fat > carbohydrate. This indicates that tiger nuts contain elevated carbohydrate levels, crude fat and protein. From the data obtained, the high potassium to low sodium ratio of the two species of tiger nuts consequently might be imperative in diet recommendations for patients with high blood pressure (high BP) and edema as well. The investigated tiger nut varieties are rich sources of the phytochemicals, oil and contain moderate amounts of protein. They are also rich sources of fiber and carbohydrates. The phytochemical constituents of the tiger nuts are important and could be of high commercial significance in both, research institutes and pharmaceuticals companies for manufacturing of new drugs and for therapeutic applications.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Opis fizyczny

p.25-37,fig.,ref.

Twórcy

autor
  • Department of Chemistry, Imo State University Owerri, PMB 2000, Owerri, Nigeria
autor
  • Department of Chemistry, Imo State University Owerri, PMB 2000, Owerri, Nigeria
autor
  • Department of Chemistry, Imo State University Owerri, PMB 2000, Owerri, Nigeria

Bibliografia

  • [1] Mishra S., Tripathi A., Tripathi D.K. and. Chauhan D.K. (2016) Role of sedges (Cyperaceae) in wetlands, environmental cleaning and as food material: Possibilities and future perspectives (chapter 18); In Plant-Environment Interaction: Responses and Approaches to Mitigate Stress, 1st Ed. M. M. Azooz and P. Ahmad. (Ed.), John Wiley & Sons, Ltd USA, pp 327 – 338.
  • [2] Bamgbose A. M., Eruvbetine D., and Dada W. (2003). Utilization of tigernut (Cyperus esculentus) in the diets from cockerel starters. Bioresour. Technol. 89, 245-248
  • [3] Adejuyitan J.A. (2011). Tiger nut processing: its food uses and health benefits. American Journal of Food Technology, 6(3), 197-201
  • [4] Belewu M.A. and Belewu K.Y. (2007). Comparative physiochemical evaluation of tigernut, soybean and coconut milk sources. Int. J. Agric. Biol. 5, 785-787
  • [5] Temple V.J., Ojobe T.O. and Kapu M.M. (1998). Chemical analysis of tigernut (Cyperus esculentus). J. Sci. Agric. 50, 261-263
  • [6] Sanchez-Zapata, E., Fernandez-Lopez, J. and Angelperez-Alvarez J. (2012). Tiger nut (Cyperus esculentus) commercialization, health aspects, composition, properties and food applications. CRFSFS, 11, 366-377
  • [7] Oladele K. A., Osundahunsi F. O. and Adebowale A. Y. (2009) Influence of Processing Techniques on the Nutrients and anti-nutrients of Tigernut (Cyperus esculentus L.). World J. Dairy and Food Sci. 2: 88-93
  • [8] Nwaoguikpe R. N. (2008). Effect of the extracts of African Yam Beans (Sphenostylis stenocarpa), Hyacinth beans (Lablab purpureus) and Bambara groundnut (Voandzeia subterrenea) on hemoglobin polymerization and the Fe2+/ Fe3+ ratio of sickle cell blood. Niger. J. Biochem. Mol. Biol. 23(2), 46-50
  • [9] Ejoh R.A., Djomdi and Ndjouenkeu R. (2006). Characteristics of tiger nut (Cyperus esculentus) tubers and their performance in the production of a milky drink. Journal of Food Processing and Preservation, 30, 145-163
  • [10] Bamishaiye E.I. and Bamishaiye O.M. (2011). Tiger Nut: As a plant, its derivatives and benefits. African Journal of Agriculture, Food, Nutrition and Development, 11(5), 5157-5170
  • [11] Ekeke G.I. and Shode F.O. (1990). Phenylalanine is the predominant antisickling agent in Cajanus cajan seed extract. Planta Medica, 56, 41-43
  • [12] Yemm, E.W. and Cocking, E.C. (1994). The determination of amino acids with Ninhydrin. Journal of American Analyst, 80, 209-213
  • [13] Chukwuma E.R., Obiama N., and Christopher O.I. (2010). The phytochemical composition and some Biochemical effect of Nigerian Tiger nut (Cyperus esculentus. L) tuber. Pakistan Journal of Nutrition, 9(7), 709-715
  • [14] [14] Belewu M.A. and Abodurin A.O. (2006). Preparation of Kuunu from unexploited rich food source-tigernut (Cyperus esculentus). Pakistan Journal of Nutrition 7, 109-111
  • [15] Ihenetu S.C., Enyoh C.E. Inyamah P.C., and Enyoh E.C. (2019). Physicochemical properties, phytochemicals and fat soluble vitamins of seed oil extracts from Sesamum indicum L. International Journal of Chemical and Biological Sciences, 1 (4), 8-12
  • [16] Duru C.E., Duru I.A., Ikpa C.B.C., and Ibe F.C. (2014). Chemical and spectra studies of the alleged killer seed of Berlinia grandiflora, IOSR - Journal of Applied Chemistry, 7(1) Ver 11, 14-14
  • [17] Duru C.E., Duru I.A., Ibe F.C., Achinihu I.O., and Ukiwe L. (2015). Functional group analysis and antibacterial studies of column chromatography eluates from the fruit of Garcinia kola. IOSR Journal of Applied Chemistry, 8(9), Ver I, 35-38
  • [18] Ikpa C.B.C., Ibe F.C., and Ikpa C. (2016). Isolation, chemical composition, characterization and anti-bacterial activity of acridine diglycoside from Moringa Olifera. International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 2, 30-36
  • [19] Ibe F.C., Ibe B.O., and Enyoh C.E. (2019a) Trace metal, FTIR and phytochemical analysis of Viscum album leaves harvested from Pentaclethra macrophylla. World News of Natural Sciences 25, 61-71
  • [20] Association of Official Analytical Chemists (AOAC) (1990). Official methods of analysis.Association of Official Chemists, 15th Edn. Washington, DC. pp. 10-30.
  • [21] Lee Y.C., Oh S.W., Chang J., and Kim I.H. (2004). Chemical composition and oxidative stability of safflower oil prepared from safflower seed roasted with different temperatures. Food Chemistry, 84, 1-6
  • [22] Adel A.A.M., Awad A.M., Mohamed H.H., and Iryna S. (2015). Chemical composition, physicochemical properties and fatty acid profile of Tiger Nut (Cyperus esculentus L) seed oil as affected by different preparation methods. International Food Research Journal, 22(5), 1931-1938
  • [23] Ibe F.C., Isiuku B.O., Enyoh C.E. (2017) Trace metals analysis of soil and edible plant leaves from abandoned municipal waste dumpsite in Owerri, Imo State, Nigeria. World News of Natural Sciences, 13, 27-42
  • [24] IUPAC (1981) International Union of Pure and Applied Chemistry Applied Chemistry Division Commission on Oils, Fats and Derivatives Standard Methods for the Analysis of Oils, Fats and derivatives 6th Edition 1st Supplement: Part 3 SECTION II: OILS AND FATS Prepared for publication by C. PAQUOT Pure & Appi. Chem., Vol. 53, Pergamon Press Ltd Britain, pp. 783-794.
  • [25] Umerie S.C., Okafor E.P. and Uka A.S. (1997) Bioresource Technology, 6, 171
  • [26] Ade-Omowaye B.I.O, Akinwande B.A., Bolarinwa I.F., and Adebiyi A.O. (2008) Evaluation of tigernut (Cyperus esculentus) - wheat composite flour and bread. Afr. J. Food Sci. 2, 87-91
  • [27] Mohammed S., Suleiman J., Eniola O., Jamila A., Omale O.C., Abbah D., and Ocholi E. (2017). Proximate composition, mineral and some vitamin contents of tiger nut (Cyperus esculentus). Journal of Clinical Investigation, 8(4), 161-165
  • [28] Ibe, F.C., Enyoh, C.E., Opara, A.I. et al. Evaluation of pollution status of groundwater resources of parts of Owerri metropolis and environs, Southeastern Nigeria, using health risk and contamination models. Int J Energ Water Res 4, 357–374 (2020). https://doi.org/10.1007/s42108-020-00071-8
  • [29] Cerone S. I., Sansinanea A.S., Streitenberger S.A., Garcia M.C., and Auza N.J., (2000). Cytochrome oxidase, Cu, Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines. Biological Trace Element Research, 73, 269-278
  • [30] Hefnawy A.E. and Elkhaiat H.M. (2015). The importance of copper and the effects of its deficiency and toxicity in animal health. International Journal of Livestock Research, 5 (12), 1-20.
  • [31] Ashish B., Neeti K., and Himanshu K. (2013). Review Paper Copper Toxicity: A Comprehensive Study. Research Journal of Recent Sciences, 2, 58-67
  • [32] Saravu K., Jose J., Bhat M.N., Jimmy B., Shastry B.A. (2007) Acute ingestion of copper sulphate: A review on its clinical manifestations and management. Indian J. Crit. Care Med. 11, 74-80
  • [33] Ibe F.C., Opara A.I., Ibe B.O., Adindu B.C., Ichu B. C. (2018) Environmental and Health implications of trace metal concentrations in street dust around some electronic repair workshops in Owerri, Southeastern Nigeria. Environ. Monit. Assess. 190 (696), 1-14
  • [34] Valko M., Morris H., Cronin M.T.D. (2005) Metals, toxicity, and oxidative stress. Curr. Med. Chem. 12(10), 1161-1208
  • [35] Ibe F.C., Ibe B.O., Nzenwa P.O., and Enedoh M.C. (2019b). Phytochemical, FTIR and Elemental Studies of African Mistlotoe (Viscum album) Leaves on Cola nitida from South-Eastern Nigeria. World Scientific News, 132, 84-97 [36] Sane M.R., Malukani K., Kulkarni R., Varun A. (2018). Fatal iron toxicity in an adult: Clinical Profile and Review. Indian J. Crit. Care Med. 22(11), 801-803
  • [37] Opara A.I., Ibe F.C., Njoku P.C., Alinnor J.I., Enenebeaku C.K. (2016). Geospatial and geostatistical analyses of particulate matter (PM10) concentrations in Imo State, Nigeria, International Letters of Natural Sciences 57, 89-107
  • [38] Ibe F.C., Njoku P.C., Alinnor J.I., and Opara A.I. (2016). Evaluation of ambient air quality in parts of Imo state, Nigeria, Research. Journal of Chemical Sciences, 6 (1), 41-52
  • [39] Ibe F.C. and Ibeachu B.E. (2020) Metallic contaminant levels of borehole water sources within metal scrap dumpsites in Aboh Mbaise, Imo State, Nigeria. World Scientific News, 144, 226-242
  • [40] Ibe F.C. and Ibe B.O. (2016). Roof runoff water as source of pollution: a case study of some selected roofs in Orlu metropolis, Imo State, Nigeria. International Letters of Natural Sciences, 50, 53-61
  • [41] Rahman S.H., Khanam D., Adyel T.M., Islam M.S., Ahsan M.A., and Akbor M.A. (2012) Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of seasonal variation and indices. Appl. Sci. 2, 584-601
  • [42] Christian Ebere Enyoh & Beniah Obinna Isiuku (2020) Characterisation of some soils from flood basin in Amakohia, Owerri, Nigeria. International Journal of Environmental Analytical Chemistry, DOI: 10.1080/03067319.2020.1773455
  • [43] Alemayhu A., Admassu S., and Tesfaye B. (2019) Shelf-life prediction of edible cotton, peanut and soybean seed oils using an empirical model based on standard quality tests. Cogent Food and Agriculture, 5(1622482) 1018. https://doi.org/10.1080/23311932.2019.1622482
  • [44] Gunstone F.D., Harwood J.L., and Padley F.B. (1986). The Lipid Handbook. Chapman & Hall, New York, NY.
  • [45] Omode A.A., Fatoki O.S., and Olaogun K.A. (1995). Physicochemical properties of some underexploited and nonconventional oilseeds. J. Agr. Food Chem. 43, 2850-2853
  • [46] CODEX Standard 33-1981, Standard for Olive Oils and Olive Pomace Oils. Codex Alimentarius. International food Standard (2013) pp. 1-9

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0550937e-f861-4b03-a601-64bfd2d2010a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.