PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 2 |

Tytuł artykułu

mRNA expression of select hypoxia-inducible genes and apoptotic control genes in zebrafish exposed to hypoxia during development

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Hypoxia is well known to occur in contaminated water environments, but it is still unclear about its effects on transcription of hypoxia-inducible genes and apoptotic control genes in zebrafish during development. In this study, the expression of select genes during zebrafish embryonic development was detected at mRNA level to investigate spatio-temporal changes of hypoxia-inducible genes and apoptosis control genes, as well as the correlation between these genes. Results showed that up-regulation of hypoxia-inducible factor 1 (HIF-1α) mRNA occurred within the first 2 h of exposure to hypoxia, followed by up-regulation of other hypoxia-inducible genes controlled by HIF-1α, such as erythropoietin and vascular endothelial growth factor. 48 hpf (the critical period for embryonic development, especially for the development of a cardiac system) and 40 dpf (the critical period for sex differentiation and development) were found to be the two sensitive windows to hypoxia, at which time significant changes in the mRNA expression of all selected hypoxia-inducible genes were clearly evident. A higher ratio of pro-apoptotic gene (Bax) vs. anti-apoptotic gene (Bcl-2) transcriptions was found in the head as compared with in the tail under hypoxia. A higher Bax/Bcl-2 ratio was found in hypoxic males than in hypoxic females, suggesting that hypoxia potentially favors the formation of testes by inducing apoptosis in ovaries during the hermaphroditism in zebrafish, which in turn causes a malebiased sex ratio.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

2

Opis fizyczny

p.357-365,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
autor
  • State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
autor
  • State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
autor
  • State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
  • Center for Coastal Pollution and Conservation, City University of Hong Kong, Hong Kong SAR, China
autor
  • Center for Coastal Pollution and Conservation, City University of Hong Kong, Hong Kong SAR, China
autor
  • State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China

Bibliografia

  • 1. ZHOU J. F., LI K., GU Y., FENG B., REN G., ZHANG L. Y., WANG Y. F., NIE Y. Z., FAN D. M. Transcriptional upregulation of RhoE by hypoxia-inducible factor (HIF)-1 promotes epithelial to mesenchymal transition of gastric cancer cells during hypoxia. Biochem. Bioph. Res. Co. 415, (2), 348, 2011.
  • 2. SHANG E. H. H., YU R. M. K., WU R. S. S. Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ. Sci. Technol. 40, (9), 3118, 2006.
  • 3. SHEN G. M., ZHAO Y. Z., CHEN M. T., ZHANG F. L., LIU X. L., WANG Y., LIU C. Z., YU J., ZHANG J. W. Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. Biochem. J. 441, (2), 675, 2012.
  • 4. PATEL J., LANDERS K., MORTIMER R. H., RICHARD K. Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta 31, (11), 951, 2010.
  • 5. KIM N. S., KANG Y. J., JO J. O., KIM H. Y., OH Y. R., KIM Y. O., JUNG M. H., OCK M. S., CHA H. J. Elevated expression of thymosin beta 4, vascular endothelial growth factor (VEGF), and hypoxia inducible factor (HIF)-1 alpha in early-stage cervical cancers. Pathol. Oncol. Res. 17, (3), 493, 2011.
  • 6. BRUEGGE K., JELKMANN W., METZEN E. Hydroxylation of hypoxia-inducible transcription factors and chemical compounds targeting the HIF-alpha hydroxylases. Curr. Med. Chem. 14, (17), 1853, 2007.
  • 7. BOLAT F., HABERAL N., TUNALI N., ASLAN E., BAL N., TUNCER I. Expression of vascular endothelial growth factor (VEGF), hypoxia inducible factor 1 alpha (HIF-1 alpha), and transforming growth factors beta 1 (TGF beta 1) and beta 3 (TGF beta 3) in gestational trophoblastic disease. Pathol. Res. Pract. 206, (1), 19, 2010.
  • 8. IYER N. V., KOTCH L. E., AGANI F., LEUNG S. W., LAUGHNER E., WENGER R. H., GASSMANN M., GEARHART J. D., LAWLER A. M., YU A. Y., SEMENZA G. L. Cellular and developmental control of O₂ homeostasis by hypoxia-inducible factor 1a. Gene Dev. 12, 149, 1998.
  • 9. SANDERS E. J., WRIDE M. A. Programmed cell death in development. Int. Rev. Cytol. 163, 105, 1995.
  • 10. VAUX D. L., KORSMEYER S. J. Cell death in development. Cell 96, 245, 1999.
  • 11. GUSTAFSSON Å. B., GOTTLIEB R. A. Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol. Cell. Physiol. 292, (1), C45, 2007.
  • 12. XIN M., DENG X. Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. J. Biol. Chem. 281, (27), 18859, 2006.
  • 13. ZHAO J., LU Y. X., SHEN H. M. Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Lett. 314, (1), 8, 2012.
  • 14. MIYASHITA T., KRAJEWSKI S., KRAJEWSKA M., WANG H. G., LIN H. K., LIEBERMANN D. A., HOFFMAN B., REED J. C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799, 1994.
  • 15. GOLOUDINA A., MAZUR S. J., APPELLA E., GARRIDO C., DEMIDOV O. N. Wip1 sensitizes p53-negative tumors to apoptosis by regulating the Bax/Bcl-x(L) ratio. Cell Cycl. 11, (10), 1883, 2012.
  • 16. HAMMOND E. M., GIACCIA A. J. Hypoxia-inducible factor-1 and p53: friends, acquaintances, or strangers? Clin. Cancer Res. 12, 5007, 2006.
  • 17. WINCEWICZ A., SULKOWSKA M., KODA M., SULKOWSKI S. Cumulative expression of HIF-1-alpha, Bax, Bcl-xL and P53 in human colorectal cancer. Pathology 39, (3), 334, 2007.
  • 18. CHATEAUVIEUX S., GRIGORAKAKI C., MORCEAU F., DICATO M., DIEDERICH M. Erythropoietin, erythropoiesis and beyond. Biochem. Pharmacol. 82, (10), 1291, 2011.
  • 19. HEDLEY B. D., ALLAN A. L., XENOCOSTAS A. The role of erythropoietin and erythropoiesis-stimulating agents in tumor progression. Clin. Cancer Res. 17, (20), 6373, 2011.
  • 20. WU R. S. S. Hypoxia: from molecular responses to ecosystem responses. Mar. Pollut. Bull. 45, 35, 2002.
  • 21. KONG R. Y. C., GIESY J. P., WU R. S. S., CHEN E. X. H., CHIANG M. W. L., LIM P. L., YUEN B. B. H., YIP B. W. P., MOK H. O. L., AU D. W. T. Development of a marine fish model for studying in vivo molecular responses in ecotoxicology. Aquat. Toxicol. 86, (2), 131, 2008.
  • 22. STAINIER D. Y. R., WEINSTEIN B. M., DETRICH H. W., ZON L. I., FISHMAN M.C. Cloche, An early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, (10), 3141, 1996.
  • 23. ZHANG Q., TANG X., LU Q. Y., ZHANG Z. F., BROWN J., LE A. D. Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1α and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Mol. Cancer Ther. 4, 1465, 2005.
  • 24. MIQUEROL L., LANGILLE B. L., NAGY A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127, 3941, 2000.
  • 25. SHANG E. H. H., WU R. S. S. Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ. Sci. Technol. 38, (18), 4763, 2004.
  • 26. SEMENZA G. L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24, (2), 97, 2009.
  • 27. UEBA H., BRINES M., YAMIN M., UMEMOTO T., AKO J., MOMOMURA S., CERAMI C., KAWAKAMI M. Cardioprotection by a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin. P. Natl. Acad. Sci. USA 107, (32), 14357, 2010.
  • 28. LANGHEINRICH U., HENNEN E., STOTT G., VACUN G. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr. Biol. 12, (23), 2023, 2002.
  • 29. PARK S. Y., JEONG K. J., LEE J., YOON D. S., CHOI W. S., KIM Y. K., HAN J. W., KIM Y. M., KIM B. K., LEE H. Y. Hypoxia enhances LPA-induced HIF-1α and VEGF expression: Their inhibition by resveratrol. Cancer Lett. 258, (1), 63, 2007.
  • 30. TON C., STAMATIOU D., LIEW C. C. Gene expression profile of zebrafish exposed to hypoxia during development. Physiol. Genomics 13, 97, 2003.
  • 31. STAINIER D. Y. R., LEE R. K., FISHMAN M. C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119, 31, 1993.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0426d08b-5c98-4a15-80d5-2c28ce06e374
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.