PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 2 |

Tytuł artykułu

Patterns of genetic divergence among Myotis californicus, M. ciliolabrum, and M. leibii bBased on amplified fragment length polymorphism

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The California myotis (Myotis californicus) and the western small-footed myotis (Myotis ciliolabrum) are largely sympatric in western North America, and are especially similar morphologically such that only subtle features of their skull distinguish the two species. Previous analysis of mitochondrial DNA (mtDNA) sequence data resulted in paraphyly of these two species. Our objective was to examine genetic differences in nuclear loci between M. californicus and M. ciliolabrum, investigate their relationship with M. leibii, and to address the conflicting morphological and mtDNA data sets. We analyzed 198 amplified fragment length polymorphism (AFLP) fragments from 17 M. californicus, 16 M. ciliolabrum, and 10 M. leibii using principal coordinate (PCoA), neighbor-joining, Bayesian, and parsimony analyses. Our analyses recovered well-supported separation of M. californicus and M. ciliolabrum based on nuclear markers, suggesting the failure of the mitochondrial markers to recover monophyletic lineages was due to a lack of lineage sorting. Unexpectedly, M. ciliolabrum was paraphyletic with respect to M. leibii individuals from the eastern United States. In conclusion, our analysis of nuclear AFLP markers recovered distinct genetic lineages or clusters that corresponded to the recognized species defined by morphology, M. californicus, M. ciliolabrum, and M. leibii. We propose that these divergences are somewhat incomplete and the divergence between M. ciliolabrum and M. leibii occurred more recently than the speciation events separating the currently sympatric species M. californicus and M. ciliolabrum.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.337-347,fig.,ref.

Twórcy

  • Angelo State University, ASU Station 10890, San Angelo, TX 76909, USA
autor
  • Department of Biology, McMurry University, Abilene, TX 79697, USA
autor
  • Department of Biological Sciences, Tarleton State University, Stephenville, TX 76402, USA

Bibliografia

  • 1. Altoff, D. M., M. A. Gitsendanner, and K. A. Segraves. 2007. The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Systematic Biology, 56: 477–484. Google Scholar
  • 2. Ammerman, L. K., C. L. Hice, and D. J. Schmidly. 2012. Bats of Texas. Texas A&M University Press, College Station, Texas, 306 pp. Google Scholar
  • 3. Avise, J. C. 1994. Molecular markers, natural history, and evolution. Chapman & Hall, New York, 511 pp. Google Scholar
  • 4. Bensch, S., and M. Akesson. 2005. Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 14: 2899–2914. Google Scholar
  • 5. Bickham, J., K. Mcbee, and D. Schlitter. 1986. Chromosomal variation among seven species of Myotis (Chiroptera: Vesper tilionidae). Journal of Mammalogy, 67: 746–750. Google Scholar
  • 6. Bogan, M. A. 1974. Identification of Myotis californicus and M. leibii in southwestern North America. Proceedings of the Biological Society of Washington, 87: 49–56. Google Scholar
  • 7. Bonin, A., F. Pompanon, and P. Taberlet. 2005. Use of amplified fragment length polymorphism (AFLP) markers in surveys of vertebrate diversity. Methods in Enzymology, 395: 145–161. Google Scholar
  • 8. Constantine, D. G. 1998. An overlooked external character to differentiate Myotis californicus and Myotis ciliolabrum (Ves pertilionidae). Journal of Mammalogy, 79: 624–630. Google Scholar
  • 9. Cronin, M. A., M. M. Mcdonough , H. M. Huynh , and R. J. Baker. 2013. Genetic relationships of North American bears (Ursus) inferred from amplified fragment length polymorphisms and mitochondrial DNA sequences. Canadian Journal of Zoology, 91: 626–634. Google Scholar
  • 10. Dasmahapatra, K. K., J. I. Hoffman, and W. Amos. 2009. Pinniped phylogenetic relationships inferred using AFLP markers. Heredity, 103: 168–177. Google Scholar
  • 11. Earl, D. A., and B. M. Von Holdt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4: 359–361. Google Scholar
  • 12. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611–2620. Google Scholar
  • 13. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution, 11: 213–221. Google Scholar
  • 14. Furman, A., E. Coraman, Y. E. Celik, T. Postawa , J. Bachanek , and M. Ruedi. 2014. Cytonuclear discordance and the species status of Myotis myotis and Myotis blythii. Zoologica Scripta, 43: 549–561. Google Scholar
  • 15. Gannon, W. L., R. E. Sherwin , T. N. De Carvalho , and M. J. O'Farrell. 2001. Pinnae and echolocation call differences between Myotis californicus and M. ciliolabrum (Chiroptera: Vespertilionidae). Acta Chiropterologica, 3: 77–91. Google Scholar
  • 16. Hall, E. R. 1981. The mammals of North America, 2nd edition, John Wiley and Sons, New York, 248 pp. Google Scholar
  • 17. Harvey, M. J., J. S. Altenbach, and T. L. Best. 2011. Bats of the United States and Canada. Johns Hopkins University Press, Baltimore, Maryland, 202 pp. Google Scholar
  • 18. Herd, R. 1987. Electrophoretic divergence of Myotis leibii and My otis ciliolabrum (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 65: 1857–1860. Google Scholar
  • 19. Hillis, D. M. and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42: 182–192. Google Scholar
  • 20. Holloway, G. L., and R. M. R. Barclay. 2001. Myotis ciliolabrum. Mammalian Species, 670: 1–5. Google Scholar
  • 21. Jakobsson, M., and N. A. Rosenberg. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23: 1801–1806. Google Scholar
  • 22. Johnson, N. K., and C. Cicero. 2004. New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds. Evolution, 58: 1122–1130. Google Scholar
  • 23. Johnson, J. B., and J. E. Gates. 2008. Spring migration and roost selection of female Myotis leibii in Maryland. Northeastern Naturalist, 15: 453–460. Google Scholar
  • 24. Kays, R. W., and D. E. Wilson. 2009. Mammals of North America, second edition. Princeton University Press, New Jersey, 816 pp. Google Scholar
  • 25. Khan, F. A. A., C. D. Phillips, and R. J. Baker. 2014. Timeframes of speciation, reticulation, and hybridization in the bulldog bat explained through phylogenetic analyses of all genetic transmission elements. Systematic Biology, 63: 96–110. Google Scholar
  • 26. Kingston, T., and S. J. Rossiter. 2004. Harmonic-hopping in Wallacea's bats. Nature, 429: 654–657. Google Scholar
  • 27. Knowles L. L. , and C. L. Richards. 2005. Importance of genetic drift during Pleistocene divergence as revealed by anal yses of genomic variation. Molecular Ecology, 14: 4023–4032. Google Scholar
  • 28. Larsen, R. J., M. C. Knapp, H. H. Genoways, F. A. A. Khan, P. A. Larsen , D. E. Wilson , and R. J. Baker. 2012. Genetic diversity of neotropical Myotis (Chiroptera: Vespertilio nidae) with an emphasis on South American species. PLoS ONE, 7: e46578. Google Scholar
  • 29. Lee, D. N., R. S. Pfau, and L. K. Ammerman. 2010. Taxonomic status of the Davis Mountains cottontail, Sylvilagus robustus, revealed by amplified fragment length polymorphism. Journal of Mammalogy, 91: 1473–1483. Google Scholar
  • 30. Mcdonough, M. M., L. K. Ammerman, R. M. Timm, H. H. Genoways , P. A. Larsen , and R. J. Baker. 2008. Speciation within bonneted bats (genus Eumops): the complexity of morphological, mitochondrial, and nuclear data sets in systematics. Journal of Mammalogy, 89: 1306–1315. Google Scholar
  • 31. Medellin, R. A., H. T. Arita, and O. Sánchez. 2008. Identificación de los murciélagos de México, 2nd edition. Instituto de Ecología, Universidad Nacional Autonoma de México, 78 pp. Google Scholar
  • 32. Mendelson, T., and J. Simons. 2006. AFLPs resolve cytonuclear discordance and increase resolution among barcheek darters. Molecular Phylogenetics and Evolution, 41: 445–453. Google Scholar
  • 33. Meudt, H., and A. Clarke. 2007. Almost forgotten or latest practice? AFLP applications, analyses, and advances. TRENDS in Plant Science, 12: 1360–1385. Google Scholar
  • 34. Miller, G. S., Jr. , and G. M. Allen. 1928. The American bats of the genus Myotis and Pizonyx. Bulletin of the United States National Museum, 144: 1–218. Google Scholar
  • 35. Moosman, P. R., J. P. Veilleux , G. W. Pelton , and H. H. Thomas. 2013. Changes in capture rates in a community of bats in New Hampshire during the progression of whitenose syndrome. Northeastern Naturalist, 20: 552–558. Google Scholar
  • 36. Ogden, R., and R. S. Thorpe. 2002a. Molecular evidence for ecological speciation in tropical habitats. Proceedings of the National Academy of Sciences of the United States of Amer ica, 99: 13612–13615. Google Scholar
  • 37. Ogden, R., and R. S. Thorpe. 2002b. The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards. Molecular Ecology, 11: 437–445. Google Scholar
  • 38. O'Keefe, J. M., and M. Lavoie. 2011. Maternity colony of Eastern small-footed Myotis (Myotis leibii) in a historic building. Southeastern Naturalist, 10: 38–383. Google Scholar
  • 39. Peakall, R., and P. Smouse. 2006. G1ENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288–295. Google Scholar
  • 40. Peters, J. L., W. Gretes, and K. Omland. 2005. Late Pleisto cene divergence between eastern and western populations of wood ducks (Aix sponsa) inferred by the ‘isolation with migration’ coalescent method. Molecular Ecology, 14: 3407–3418. Google Scholar
  • 41. Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945. Google Scholar
  • 42. Reid, F. A. 2006. A field guide to the mammals of North America north of Mexico. Peterson Field Guides, 4th edition. Hough ton Mifflin Co., New York, 579 pp. Google Scholar
  • 43. Rodriguez, R., and L. Ammerman. 2004. Mitochondrial DNA divergence does not reflect morphological difference between Myotis californicus and Myotis ciliolabrum. Journal of Mammalogy, 85: 842–851. Google Scholar
  • 44. Ronquist, F., and J. P. Huelsenbeck. 2003. MRBAYES 3: Baye sian phylogenetic inference under mixed models. Bioin for matics, 19: 1572–1574. Google Scholar
  • 45. Sacks, B. J., D. L. Bannasch , B. B. Chomel , and H. B. Ernest. 2008. Coyotes demonstrate how habitat specialization by individuals of a generalist species can diversify populations in a heterogenous ecoregion. Molecular Biology and Evolution, 25: 1384–1394. Google Scholar
  • 46. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstruction phylogenetic trees. Molecular Biology and Evolution, 4: 406–425. Google Scholar
  • 47. Sikes, R S., W. L. Gannon, and THE ANIMAL CARE and USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 48. Simmons, N. B. 2005. Order Chiroptera. Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder, eds.). Johns Hopkins University Press, Baltimore, Maryland, 2142 pp. Google Scholar
  • 49. Simpson, M. R. 1993. Myotis californicus. Mammalian Species, 428: 1–4. Google Scholar
  • 50. Stadelmann, B., L. K. Lin , T. H. Kunz , and M. Ruedi. 2007. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular Phylogenetics and Evolution, 43: 32–48. Google Scholar
  • 51. Strickland, J. L., C. L. Parkinson, J. K. Mccoy, and L. K. Ammerman. 2014. Phylogeography of Agkistrodon piscivorous with emphasis on the western limit of its range. Copeia, 2014: 639–649. Google Scholar
  • 52. Swofford, D. L. 2001. PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4.0b10. Sinauer Associates Inc., Publishers, Sunderland, Massachusetts. Google Scholar
  • 53. Thompson, C. W., R. S. Pfau, J. R. Choate, H. H. Genoways, and E. J. Finck. 2011. Identification and characterization of the contact zone between short-tailed shrews (Blarina) in Iowa and Missouri. Canadian Journal of Zoology, 89: 278–288. Google Scholar
  • 54. Triant, D., and J. Dewoody. 2007. The occurrence, detection, and avoidance of mitochondrial DNA translocations in mam malian systematics and phylogeography. Journal of Mam malogy, 88: 908–920. Google Scholar
  • 55. Turner, G. G., D. M. Reeder, and J. T. H. Coleman. 2011. A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Research News, 52: 13–27. Google Scholar
  • 56. Van Zyll De Jong, C. G. 1984. Taxonomic relationships of Nearctic small-footed bats of the Myotis leibii group (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 62: 2519–2526. Google Scholar
  • 57. Vekemans, X. 2002. AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium. Distributed by the author. Available at http://www.ulb.ac.be/sciences/lagev/aflp-surv.html. Google Scholar
  • 58. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van De Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeu. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407–4414. Google Scholar
  • 59. Woodsworth, G. C. 1981. Spatial portioning by two species of sympatric bats, Myotis californicus and Myotis leibii. M.Sci. Thesis Carleton University, Ottawa, 68 pp. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-04182e01-d4c4-40b1-9b85-5200c251d147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.