PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 57 | 2 |

Tytuł artykułu

Patterns of variation in the tympanic bulla of tuco-tucos (Rodentia, Ctenomyidae, Ctenomys)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As subterranean rodents live in burrows and are constrained by the physics of their environment to vocalize, mainly in low frequencies, their expanded middle ear cavities are associated with enhanced lower-frequency hearing. Previous literature has widely acknowledged inflated tympanic bulla as a character to be found in the majority of the Ctenomys species. To explore the morphology of Ctenomys tympanic bulla, we studied a sample of 669 skulls, obtained from 21 species, for tympanic bulla size, volume, and internal structure. The study determined that bullar inflation does not seem to be the rule in Ctenomys and that the relationship between bullar size (volume) and skull size do not correspond to the phylogeny based on cytochrome b sequences thus probably being a species-specific adaptive characteristic. We also found that the internal bullar structure differs between taxa, depending on the relative contributions of cancellous (alveolar) and septate patterns to the partitioning of the bulla.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

57

Numer

2

Opis fizyczny

p.153-163,fig.,ref.

Twórcy

  • Seccion Etologia, Facultad de Ciencias, Universidad de la Republica Oriental del Uruguay, Igua 4225, Montevideo 11400, Uruguay
autor
  • Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Nunoa, Santiago, Chile
autor
  • Departamento de Ecologia, Pontificia Universidad Catolica de Chile, Avda. Libertador Bernardo O'Higgins 340, Casilla 114-D, Santiago C.P. 6513677, Chile

Bibliografia

  • Agnarsson I, May-Collado LJ (2008) The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol Phylogenet Evol 48:964–985
  • Agrawal VC (1967) Skull adaptations in fossorial rodents. Mammalia 31:300–312
  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
  • Altuna CA, Izquierdo G, Tassino B (1993) Análisis del comportamiento de excavación en dos poblaciones del complejo Ctenomys pearsoni (Rodentia, Octodontidae). Bol Soc Zool Uruguay 8:275–282, 2ª época
  • Argyle EC, Mason MJ (2008) Middle ear structures of Octodon degus (Rodentia: Octodontidae), in comparison with those of subterranean caviomorphs. J Mammal 89:1447–1455
  • Burda H, Bruns V, Müller M (1990) Sensory adaptations in subterranean mammals. In: Nevo E, Reig O (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York, pp 269–293
  • Castillo AH, Cortinas MN, Lessa EP (2005) Rapid diversification of South American tuco-tucos (Ctenomys; Rodentia, Ctenomyidae): contrasting mitochondrial and nuclear intron sequences. J Mammal 86:170–179
  • Felsenstein J (1985) Confidence limits on phylogenies with a molecular clock. Syst Zool 34:152–161
  • Francescoli G (1999) A preliminary report on the acoustic communication in Uruguayan Ctenomys (Rodentia, Octodontidae): basic sound types. Bioacoustics 10:203–218
  • Francescoli G (2000) Sensory capabilities and communication in subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, IL, pp 111–144
  • Gardner AC, Emmons LH (1984) Species groups in Proechimys (Rodentia, Echimyidae) as indicated by karyology and bullar morphology. J Mammal 65:10–25
  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9
  • Heffner RS, Heffner HE (1992) Hearing and sound localization in blind mole rats: Spalax ehrenbergi. Hear Res 62:206–216
  • Heffner RS, Heffner HE (1993) Degenerate hearing and sound localization in Naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. J Comp Neurol 331:418–433
  • Hooper ET (1968) Anatomy of middle-ear walls and cavities in nine species of microtine rodents. Occ Pap Mus Zool Univ Mich 657:1–28
  • Huchon D, Douzery EJP (2001) From the old world to the new world: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Mol Phylogenet Evol 20:238–251
  • Huelsenbeck JP, Ronchist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755
  • Lacey EA, Wieczorek JR (2003) Ecology of sociality in rodents: a ctenomyid perspective. J Mammal 84:1198–1211
  • Lacey EA, Braude SH, Wieczorek JR (1997) Burrow sharing by colonial tuco-tucos (Ctenomys sociabilis). J Mammal 78:556–562
  • Lay DM (1972) The anatomy, physiology, functional significance and evolution of specialized hearing organs of Gerbillinae rodents. J Morphol 138:41–120
  • Liao J, Zhang Z, Liu N (2007) Effects of altitudinal change on the auditory bulla in Ochotona daurica (Mammalia, Lagomorpha). J Zool Syst Evol Res 45:151–154
  • Lombard RE, Hetherington TE (1993) Structural basis of hearing and sound transmission. In: Hanken J, Hall BK (eds) The skull. University of Chicago Press, Chicago, IL, pp 241–302
  • Maddison W P, Maddison DR (2008) Mesquite: a modular system for evolutionary analysis, version 2.5. http://​mesquiteproject.​org
  • Malia MJ Jr, Lipscomb DL, Allard MW (2003) The misleading effects of composite taxa in supermatrices. Mol Phylogenet Evol 27:522–527
  • Mascheretti S, Mirol PM, Giménez MD, Bidau CJ, Contreras JR, Searle JB (2000) Phylogenetics of the speciose and chromosomally variable rodent genus Ctenomys (Ctenomyidae, Octodontoidea), based on mitochondrial cytochrome b sequences. Biol J Linn Soc 70:361–376
  • Mason MJ (2004) The middle ear apparatus of the tuco-tuco Ctenomys sociabilis (Rodentia, Ctenomyidae). J Mammal 85:797–805
  • Mason MJ (2006) Evolution of the middle ear apparatus in talpid moles. J Morphol 267:678–695
  • May-Collado LJ, Agnarsson I (2006) Cytochrome b and Bayesian inference of whale phylogeny. Mol Phylogenet Evol 38:344–354
  • Midford PE, Garland T Jr, Maddison W (2008) “PDAP:PDTREE” package for Mesquite, version 1.11. http://​mesquiteproject.​org/​pdap_​mesquite/​
  • Momtazi F, Darvish J, Ghassemzadeh F, Moghimi A (2008) Elliptic Fourier analysis on the tympanic bullae in three Meriones species (Rodentia, Mammalia): its application in biosystematics. Acta Zool Cracoviensia 51A:49–58
  • Montgelard C, Forty E, Arnal V, Matthee CA (2008) Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evol Biol 8:321
  • Pagel M, Harvey P (1988) Recent developments in the analysis of comparative data. Q Rev Biol 63:413–440
  • Pavlinov I, Rogovin KA (2000) The correlation of the size of the pinna and the auditory bulla in specialized desert rodents. Zh Obshch Biol 61:87–101 (in Russian)
  • Pearson OP (1959) Biology of the subterranean rodents, Ctenomys, in Peru. Memorias del Museo de Historia Natural “Javier Prado” 9:3–56
  • Pearson OP, Christie MI (1985) Los tuco-tucos (género Ctenomys) de los Parques Nacionales Lanin y Nahuel Huapi, Argentina. Hist Nat (Corrientes) 5:337–343
  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818
  • Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601
  • Potapova EG (2001) Morphological patterns and evolutionary pathways of the middle ear in dormice (Gliridae, Rodentia). Trakya Univ J Sci Res 2:159–170
  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
  • Randall JA (1993) Behavioural adaptations of desert rodents (Heteromyidae). Anim Behav 45:263–287
  • Randall JA (1994) Convergences and divergences in communication and social organisation of desert rodents. Aust J Zool 42:405–433
  • Ravicz ME, Rosowski JJ, Vogt HF (1992) Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: I. Middle-ear input impedance. J Acoust Soc Am 92:157–177
  • Reig OA, Busch C, Ortells MO, Contreras JR (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York, pp 71–96
  • Rodríguez F, Oliver JF, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501
  • Rosowski JJ (1994) Outer and middle ears. In: Fay RR, Popper AN (eds) Comparative hearing: mammals. Springer-Verlag, New York, pp 172–247
  • Rosowski JJ, Ravicz ME, Songer JE (2006) Structures that contribute to middle-ear admittance in chinchilla. J Comp Physiol A 192:1287–1311
  • Schleich CE, Busch C (2004) Functional morphology of the middle ear of Ctenomys talarum (Rodentia: Octodontidae). J Mammal 85:290–295
  • Schleich CE, Vassallo AI (2003) Bullar volume in subterranean and surface-dwelling caviomorph rodents. J Mammal 84:185–189
  • Sheets BS (1989) Cranial anatomy of Jaculus orientalis (Rodentia, Dipodoidea): new evidence for close relationship of dipodoid and muroid rodents. Undergraduate honors dissertation, Baruch College
  • Simkin GN (1965) Types of ear cavities of mammals in relation to distinctive features of their mode of life. Zool Zh 44:1538–1545 (in Russian)
  • Slamovits CH, Cook JA, Lessa EP, Rossi MS (2001) Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach. Mol Biol Evol 18:1708–1719
  • Squarcia SM, Sidorkewicj NS, Casanave EB (2007) The hypertrophy of the tympanic bulla in three species of Dasypodids (Mammalia, Xenarthra) from Argentina. Int J Morphol 25:597–602
  • StatSoft (1999) STATISTICA for Windows, version 5.5. StatSoft, Tulsa
  • Stein BR (2000) Morphology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 19–61
  • Thompson J, Gibson TP, Lewniak F, Jeanmougin F, Higgins D (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
  • Tullberg T (1899). Ueber das System der Nagethiere: Eine Phylogenetische Studie. Akademische Buchdruckerei, E. Berling, Upsala
  • Verzi DH, Olivares AI (2006) Craniomandibular joint in South American burrowing rodents (Ctenomyidae): adaptations and constraints related to a specialized mandibular position in digging. J Zool 270:488–501
  • Webster DB, Webster M (1971) Adaptive value of hearing and vision in kangaroo rat predator avoidance. Brain Behav Evol 4:310–322
  • Webster DB, Webster M (1975) Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear. J Morphol 146:343–376
  • Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. The Johns Hopkins University Press, Baltimore, MD
  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-03d75bc4-fa51-4ab2-abbc-4e008c9201ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.