PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |

Tytuł artykułu

Subdividing large mountainous watersheds into smaller hydrological units to predict soil loss and sediment yield using the GeoWEPP model

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The number of studies using prediction models on measuring soil loss and/or sediment yield has been continuously increasing since these models are considered timely and cost-effective. Similarly, in this study, we used the GeoWEPP model to determine how much soil is being lost and the amount of sediment being yielded from Godrahav Creek Watershed (GCW) located in northeastern Turkey. Because the watershed is large (5,298.21 ha) and has mountainous and steep terrain, it was subdivided into smaller hydrological units (SHUs) so that the model can run easily and give detailed findings. The results revealed that out of 18,596.8 t of soil loss generated from both hillslopes and channels within the whole GCW, approximately 9,854.8 t y⁻¹ reached Borcka Dam reservoir as sediment. The model also predicted annual average soil loss and sediment yield as 1.73 t ha⁻¹y⁻¹ and 1,86 t ha⁻¹y⁻¹, respectively. In addition, with a sediment delivery ratio (SDR) of 0.530, the results indicated that almost half of the detached soil particles were carried away as sediment. Despite the dominant vegetation coverage, relatively high SDR and soil loss – particularly in certain SHUs – can be associated with steep terrain and conversion of natural lands in the watershed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

5

Opis fizyczny

p.2135-2146,fig.,ref.

Twórcy

autor
  • Faculty of Forestry,Artvin Coruh University, Artvin, Turkey
autor
  • Faculty of Forestry,Artvin Coruh University, Artvin, Turkey
  • Faculty of Forestry,Artvin Coruh University, Artvin, Turkey

Bibliografia

  • 1. YÜKSEK T., KURDOĞLU O., YÜKSEK F. The effects of land use changes and management types on surface soil properties in Kafkasör protected area in Artvin, Turkey. Land Degradation & Development. 21 (6), 582, DOI: 10.1002/ldr.1000, 2010.
  • 2. ÖZALP M., ERDOĞAN YÜKSEL E., YÜKSEK T. Soil property changes after conversion from forest to pasture in mount Sacinka, Artvin, Turkey. Land Degradation & Development. 27 (4), 1007, DOI: 10.1002/ldr.2353, 2016.
  • 3. MEKONNEN M., KEESSTRA S.D., BAARTMAN J.E., RITSEMA C.J., MELESSE A.M. Evaluating sediment storage dams: Structural off-site sediment trapping measures in northwest Ethiopia. Cuadernos de Investigación Geográfica. 41 (1), 7, DOI: 10.18172/cig.2643, 2015.
  • 4. ÖZALP M., YILDIRIMER S., ERDOĞAN YÜKSEL E. Environmental and social effects of both large dams and run-of-river hydroelectric power plants within the Coruh River Watershed in Artvin, Turkey. in New Frontiers in Environmental and Water Management. Kavala, Greece. 2015.
  • 5. YILDIRIMER S., ÖZALP M., ERDOĞAN YÜKSEL E. Determining loss and degradation of lands as a result of large dam projects and associated road constructions within the Coruh River Watershed. Artvin Coruh University, Journal of Forestry Faculty. 16 (1), 1, DOI: 10.17474/acuofd.00766, 2015 [In Turkish].
  • 6. YAVUZ ÖZALP A., AKINCI H., TEMUÇIN S. Determining topographic and some physical characteristics of the land in Artvin city and investigating relationship between these characteristics with land cover. Artvin Coruh University, Journal of Forestry Faculty 14 (2), 292, DOI: 10.17474/acuofd.77100, 2013 [In Turkish].
  • 7. TURGUT B., ÖZALP M., KÖSE B. Physical and chemical properties of recently deposited sediments in the reservoir of the Borçka Dam in Artvin, Turkey. Turkish Journal of Agriculture and Forestry. 39, 663, DOI: 10.3906/tar-1404-60, 2015.
  • 8. SABIR M.A., SHAFIQ-UR-REHMAN S., UMAR M., WASEEM A., FAROOQ M., KHAN A.R. The impact of suspended sediment load on reservoir siltation and energy production: A case study of the Indus River and its tributaries. Polish Journal of Environmental Studies. 22 (1), 219, 2013.
  • 9. GONZÁLEZ V.I., CARKOVIC A.B., LOBO G.P., FLANAGAN D.C., BONILLA C.A. Spatial discretization of large watersheds and its influence on the estimation of hillslope sediment yield. Hydrological Processes. 30 (1), 30. DOI: 10.1002/hyp.10559, 2016.
  • 10. ZIVOTIC L., PEROVIC V., JARAMAZ D., DORDEVIC A., PETROVIC R., TODOROVIC M. Application of USLE, GIS, and remote sensing in the assessment of soil erosion rates in southeastern Serbia. Polish Journal of Environmental Studies. 21 (6), 1929, 2012.
  • 11. SAGHAFIAN B., MEGHDADI A.R., SIMA S. Application of the WEPP model to determine sources of run-off and sediment in a forested watershed. Hydrological Processes. 29 (4), 481, DOI: 10.1002/hyp.10168, 2015.
  • 12. SHEN Z.Y., GONG Y.W., LI Y.H., HONG Q., XU L., LIU R.M. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges reservoir area. Agricultural Water Management. 96 (10), 1442, DOI: 10.1016/j.agwat.2009.04.017, 2009.
  • 13. PANDEY A., HIMANSHU S.K., MISHRA S.K., SINGH V.P. Physically based soil erosion and sediment yield models revisited. Catena. 147, 595, DOI: 10.1016/j.catena.2016.08.002, 2016.
  • 14. MAALIM F.K., MELESSE A.M., BELMONT P., GRAN K.B. Modeling the impact of land use changes on runoff and sediment yield in the le sueur watershed, Minnesota using GeoWEPP. Catena. 107, 35, DOI: 10.1016/j.catena.2013.03.004, 2013.
  • 15. GONZÁLEZ-ARQUEROS M.L., MENDOZA M.E., VÁZQUEZ-SELEM L. Human impact on natural systems modeled through soil erosion in GeoWEPP: A comparison between pre-hispanic periods and modern times in the Teotihuacan valley (Central Mexico). Catena. 149, 505, DOI: 10.1016/j.catena.2016.07.028, 2017.
  • 16. DEFERSHA M.B., MELESSE A.M., MCCLAIN M.E. Watershed scale application of WEPP and erosion 3d models for assessment of potential sediment source areas and runoff flux in the Mara river basin, Kenya. Catena. 95, 63, DOI: 10.1016/j.catena.2012.03.004, 2012.
  • 17. FLANAGAN D.C., FRANKENBERGER J.R., COCHRANE T.A., RENSCHLER C.S., ELLIOT W.J. Geospatial application of the water erosion prediction project (WEPP) model. Transactions of the Asabe. 56 (2), 591, 2013.
  • 18. GÜLÇUR F. Methods for soil physical and chemical analyses. Istanbul University, Faculty of Forestry Publication number: 201. Kutulmuş Printing, Istanbul, 225. 1974 [In Turkish].
  • 19. KAÇAR B. Chemical analyses of plant and soil: III. Soil analyses. Ankara University, Faculty of Agriculture Publication number: 3. Ankara. 1994 [In Turkish].
  • 20. FASHI F.H., EJLALI F. Evaluating spatial distribution of soil erosion using WEPP erosion model and GIS tools: A review. Agricultura, Agricultural Practice and Science Journal. 95 (3-4), DOI: 10.15835/arspa.v95i3-4.11790, 2015.
  • 21. AL-MUKHTAR M., DUNGER V., MERKEL B. Runoff and sediment yield modeling by means of WEPP in the Bautzen Dam catchment, Germany. Environmental Earth Sciences. 72 (6), 2051, DOI: 10.1007/s12665-014-3113-0, 2014.
  • 22. SADEGHI S.H.R., SEGHALEH M.B., RANGAVAR A.S. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena. 102, 55, DOI: 10.1016/j.catena.2011.01.003, 2013.
  • 23. PANDEY A., CHOWDARY V.M., MAL B.C., BILLIB M. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. Journal of Hydrology. 348 (3-4), 305, DOI: 10.1016/j.jhydrol.2007.10.010, 2008.
  • 24. MARTINEC J., RANGO A. Merits of statistical criteria for the performance of hydrological models. Journal of the American Water Resources Association. 25 (2), 421, DOI: 10.1111/j.1752-1688.1989.tb03079.x, 1989.
  • 25. PIERI L., POGGIO M., VIGNUDELLI M., BITTELLI M. Evaluation of the WEPP model and digital elevation grid size, for simulation of streamflow and sediment yield in a heterogeneous catchment. Earth Surface Processes and Landforms. 39 (10), 1331, DOI: 10.1002/esp.3527, 2014.
  • 26. NASH J.E., SUTCLIFFE J.V. River flow forecasting through conceptual models part I – a discussion of principles. Journal of Hydrology. 10 (3), 282, DOI: 10.1016/0022-1694(70)90255-6, 1970.
  • 27. MORIASI D.N., ARNOLD J.G., VAN LIEW M.W., BINGNER R.L., HARMEL R.D., VEITH T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50 (3), 885, 2007.
  • 28. SINGH R.K., PANDA R.K., SATAPATHY K.K., NGACHAN S.V. Runoff and sediment yield modelling for a treated hilly watershed in eastern Himalaya using the water erosion prediction project model. Water Resources Management. 26 (3), 643, DOI: 10.1007/s11269-011-9937-4, 2011.
  • 29. FLANAGAN D.C., FRANKENBERGER J.R., J.C. ASCOUGH I. WEPP: Model use, calibration, and validation. Transactions of the ASABE. 55 (4), 1463, DOI: 10.13031/2013.42254, 2012.
  • 30. AMINI H., HONARJOO N., JALALIYAN A., KHALILIZADEH M., BAHARLOUIE J. A comparison of EPM and WEPP models for estimating soil erosion of Marmeh Watershed in the south Iran. Agriculture & Forestry. 60 (4), 299, 2014.
  • 31. MEGHDADI A.R. Identification of effective best management practices in sediment yield diminution using GeoWEPP: The Kasilian Watershed case study. Environ Monit Assess. 185 (12), 9803, DOI: 10.1007/s10661-013-3293-1, 2013.
  • 32. ZHANG Z., SHENG L., YANG J., CHEN X.-A., KONG L., WAGAN B. Effects of land use and slope gradient on soil erosion in a red soil hilly watershed of southern China. Sustainability. 7 (10), 14309, DOI: 10.3390/su71014309, 2015.
  • 33. YÜKSEL A.K. Research on planning Ayvalı Watershed in K. Maraş, Turkey in terms of watershed management within the concept of GIS (Geographical Information Systems) (Ph.D. Dissertation). Graduate School of Natural and Applied Sciences. Karadeniz Technical University. Trabzon, 2001 [In Turkish].
  • 34. AYDIN M. Research on determining amount of soil loss from Torul Dam Watershed in Gümüşhane using WEPP and providing solutions (Ph.D. Dissertation) Graduate School of Natural and Applied Sciences. Karadeniz Technical University. Trabzon, 2007 [In Turkish].
  • 35. VERHEIJEN F.G.A., JONES R.J.A., RICKSON R.J., SMITH C.J. Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews. 94 (1-4), 23, DOI: 10.1016/j.earscirev.2009.02.003, 2009.
  • 36. ZHONGMING W., LEES B.G., FENG J., WANNING L., HAIJING S. Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion. Catena. 83 (1), 87, DOI: 10.1016/j.catena.2010.07.006, 2010.
  • 37. LI M., YAO W., LI Z., LIU P., YANG E., SHEN Z. Using 137cs to quantify the sediment delivery ratio in a small watershed. Appl Radiat Isot. 70 (1), 40, DOI: 10.1016/j.apradiso.2011.07.010, 2012.
  • 38. KOULOURI M., GIOURGA C. Land abandonment and slope gradient as key factors of soil erosion in mediterranean terraced lands. Catena. 69 (3), 274, DOI: 10.1016/j.catena.2006.07.001, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-01ee4bbc-6447-4569-bc03-871861d14362
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.