PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 42 | 1 |

Tytuł artykułu

Characterization and identification of gut-associated phytase-producing bacteria in some fresh water fish cultured in ponds

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Phytase produced by gut bacteria increases the availability of phosphorus and other important nutrients in ruminants by virtue of enzymatic hydrolysis of the phytic acid, an antinutritional factor present in the majority of plant feedstuffs. This topic, however, has been insufficiently investigated in fish. This study was intended: to evaluate the presence of phytase-producing autochthonous bacteria in the gastrointestinal (GI) tracts of 14 freshwater teleost fishes; and to identify the most promising phytase-producing strains by phenotypic characterization and 16S rDNA. Materials and Methods. The GI tracts were removed and divided into proximal (PI) and distal (DI) intestine. Homogenates of intestinal segments were spread onto sterilized tryptone soya agar and modified phytase screening media (MPSM) plates to determine autochthonous culturable heterotrophic and phytase-producing microbiota, respectively. Data were presented as log viable counts (LVC) g-1 intestine. Out of 95 phytase-producing isolates, primarily selected 32 isolates were studied for phytase-assay using MPSM broth. Promising phytase-producing isolates were evaluated for other exo-enzymes (amylase, cellulase, protease, lipase) using 4 selective media. Two most promising phytase-producing isolates were identified by phenotypic characterization and 16S rDNA. Results. Population of heterotrophic bacteria was highest (LVC = 8.29 g-1 intestine) in the DI of Gudusia chapra followed by DI of Hypophthalmichthys molitrix (LVC = 6.82 g-1 intestine). However, more than log 4 reduction of the phytase-producing bacteria was observed compared to heterotrophic bacteria. Phytase-producing microbiota was highest in the PI of G. chapra (LVC = 3.95 g-1 intestine) followed by PI of Labeo calbasu (LVC = 3.78 g-1 intestine). The strain LB1.4 isolated from DI of Labeo bata showed highest phytase activity (2.33 ± 0.006 U · mL–1) followed by the strain GC1.2 (2.19 ± 0.018 U · mL–1) isolated from PI of G. chapra. Both isolates were efficient in producing other exo-enzymes. Phenotypic characterization and nucleotide homology analysis revealed that the isolates LB1.4 and GC1.2 were similar to Bacillus subtilis and Bacillus atrophaeus, respectively. Conclusion. Autochthonous phytate degrading bacteria were present in the GI tract of fish that might endow ecological advantages to overcome the anti-nutritional effects of plant phytate.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

42

Numer

1

Opis fizyczny

p.37–45,fig.,ref.

Twórcy

autor
  • Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
autor
  • Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713 104, West Bengal, India

Bibliografia

  • Asfie M., Yoshijima T., Sugita H. 2003. Characterization of the goldfish fecal microflora by the fluorescent in situ hybridization method. Fisheries Science 69 (1): 21–26.DOI: 10.1046/j.1444-2906.2003.00583.x
  • Askarian F., Zhou Z., Olsen R.E., Sperstad S., Ringø E.2012a. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin.Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326–329: 1–8.DOI: 10.1016/j.aquaculture.2011.10.016
  • Askarian F., Sperstad S.,Merrifield D.L., Ray A.K., Ringø E.2012b. The effect of different feeding regimes on enzyme activity of gut microbiota in Atlantic cod (Gadus morhua L.).Aquaculture Research. (In press.)DOI: 10.1111/j.1365-2109.2011.03079.x
  • Bairagi A., Ghosh K.S., Sen S.K., Ray A.K. 2002. Enzyme producing bacterial flora isolated from fish digestive tracts.Aquaculture International 10 (2): 109–121.DOI: 10.1023/A:1021355406412
  • Bernfeld P. 1955. Amylases, alpha and beta. Pp. 149–158.In: Colowick S.P., Kaplan N.O. (eds.) Methods in enzymology.Vol. 1. Academic Press, New York.
  • BeveridgeM.C.M., Sikdar P.K., Frerichs G.N.,Millar S. 1991.The ingestion of bacteria in suspension by the common carp Cyprinus carpio L. Journal of Fish Biology 39 (6): 825–831.DOI: 10.1111/j.1095-649.1991.tb04412.x
  • BierM. 1955. Lipases. Pp. 627–642. In: Colowick S.P., Kaplan N.O.(eds.)Methods in enzymology.Vol. 1.Academic press, New York
  • Cao L., Yang Y., Wang W.M., Yakupitiyage A., Yuan D.R.,Diana J.S. 2008. Effects of pretreatment with microbial phytase on phosphorous utilization and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition 14 (2): 99–109.DOI: 10.1111/j.1365-2095.2007.00508.x
  • Cho C.Y., Bureau D. P. 2001. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research 32 (Suppl. 1):349–360.DOI: 10.1046/j.1355-557x.2001.00027.x
  • Das K.M., Tripathi S.D. 1991. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.).Aquaculture 92: 21–32.DOI: 10.1016/0044-8486(91)90005-R
  • Denison, D.A., Koehn R.D. 1977. Cellulase activity of Poronia oedipus. Mycologia 69 (3): 592–603.
  • Ellestad L.E., Dahl G., Angel R., Soares J.H.jr. 2003. The effect of exogenously administered recombinant bosine somatotropin on intestinal phytase activity and in vivo phytate hydrolysis in hybrid striped bass Morone chrysops × M. saxatilis.Aquaculture Nutrition 9 (5): 327–336.DOI: 10.1046/j.1365-2095.2003.00261.x
  • Gatlin D.M.III, Barrows F.T., Brown P., Dabrowski K., Gaylord T.G.,Hardy R.W.,Herman .,Hu G.,Krogdahl A.,Nelson R., Overturf K., Rust M., Sealey W., Skonberg D.,Souza E.J., Stone D., Wilson R., Wurtele E. 2007.Expanding the utilization of sustainable plant products In aquafeeds: a review. Aquaculture Research 38 (6): 551–579.DOI: 10.1111/j.1365-2109.2007.01704.x
  • Ghosh K., Sen S.K., Ray, A.K. 2002a. Characterization of bacilli isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion. Journal of Applied Aquaculture 12 (3): 33–42.DOI: 10.1300/J028v12n03_04
  • Ghosh K., Sen S.K., Ray A.K. 2002b. Growth and survival of rohu, Labeo rohita (Hamilton) spawn fed diets supplemented with fish intestinal microflora. Acta Ichthyologica et Piscatoria 32 (1): 83–92.
  • Ghosh K., Roy M., Kar N., Ringø E. 2010. Gastrointestinal bacteria in rohu, Labeo rohita (Actinopterygii:Cypriniformes: Cyprinidae): Scanning electron microscopy and bacteriological study. Acta Ichthyologica et Piscatoria 40 (2): 129–135. DOI: 10.3750/AIP2010.40.2.05
  • Graf E. 1983. Calcium binding to phytic acid. Journal of Agricultural and Food Chemistry 31 (4): 851–855.DOI: 10.1021/jf00118a045
  • Han Y.M., Yang F., Zhou A.G., Miller E.R., Ku P.K.,Hogberg M.G., Lei X.G. 1997. Supplemental phytases of microbial and cereal sources improve dietary phytate phosphorus utilization by pigs from weaning through finishing.Journal of Animal Science 75: 1017–1025.
  • Hardy R.W. 2010. Utilization of plant proteins in fish diets:effects of global demand and supplies of fishmeal.Aquaculture Research. 41 (5): 770–776.DOI: 10.1111/j.1365-2109.2009.02349.x
  • Holt G.J., Krieg N.R., Sneath P.H.A., Staley J.T.,Williams S.T. (eds.) 2000. Bergey’s manual of determinative bacteriology. Ninth edition. Lippincott Williams and Wilkins, Philadelphia, USA.
  • Howson S.J., Davis R.P. 1983. Production of phytatehydrolysing enzyme by some fungi. Enzyme and Microbial Technology 5 (5): 377–382.DOI: 10.1016/0141-0229(83)90012-1
  • Jhingran V.G. 1997. Fish and fisheries of India. 3rd edn.Hindustan Publishing Corporation, Delhi, India.
  • Kar N., Roy R. N., Sen S. K., Ghosh K. 2008. Isolation and characterization of extracellular enzyme producing bacilli In the digestive tracts of rohu, Labeo rohita (Hamilton) and Murrel, Channa punctatus (Bloch). Asian Fisheries Science 21 (4): 421–434.
  • Khan A., Mandal S., Samanta D., Chatterjee S., Ghosh K. 2011. Phytase-producing Rhodococcus sp. (MTCC 9508) from fish gut: A preliminary study. Proceedings of the Zoological Society 64 (1): 29–34.DOI: 10.1007/s12595-011-0004-1
  • Kinnear P.R., Gray C.D. 2000. SPSS for Windows made simple.Release10. Psychology Press, Sussex, UK.
  • Konietzny U., Greiner R. 2004. Bacterial phytase: potential application, in vivo function and regulation of its synthesis.Brazilian Journal of Microbiology 35: 11–18.
  • Kumar V., Sinha A.K.,Makar H.P.S., De Boeck G., Becker K.2011. Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition (Early view).DOI: 10.1111/j.1439-0396.2011.01169.x
  • Lan G.Q., Abdullah N., Jalaludin S., Ho Y.W. 2011.Purification and characterization of a phytase from Mitsuokella jalaludinii, a bovine rumen bacterium. African Journal of Biotechnology 10 (59): 12796–12806.
  • Lee D.-Y., Schroeder J., Gordon D.T. 1988. Enhancement of Cu bioavailability in the rat by phytic acid. Journal of Nutrition 118 (6): 712–717.
  • Lei X.G., Stahl C.H. 2000. Nutritional benefits of phytase and dietary determinants of its efficacy. Journal of Applied Animal Research 17 (1): 97–112.
  • Lei X., Ku P.K., Miller E.R., Ullrey D.E., Yokoyama M.T.1993. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. Journal of Nutrition 123 (6): 1117–1123.
  • Li X., Chi Z., Liu Z., Yan K., Li H. 2008. Phytase production by a marine yeast Kodamea ohmeri BG3. Applied Biochemistry and Biotechnology 149 (2): 183–193.DOI: 10.1007/s12010-007-8099-6
  • Maenz D.D. 2001. Enzymatic characteristics of phytases as they relate to their use in animal feeds. Pp. 61–84. In: Bedford M.R.,Partridge G.G. (eds.) Enzymes in farm animals nutrition.CABI Publishing, Wallingford, UK.
  • Mondal S., Roy T., Ray A.K. 2010. Characterization and identification of enzyme-producing bacteria isolated from the digestive tract of bata, Labeo bata. Journal of the Word Aquaculture Society 41 (3): 369–377.DOI: 10.1111/j.1749-7345.2010.00378.x
  • Mondal S., Roy T., Sen S.K., Ray A.K. 2008. Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyologica et Piscatoria 38 (1): 1–8.DOI: 10.3750/AIP2008.38.1.01 Reviews International 17 (4): 419–431.DOI: 10.1081/FRI-100108531
  • Oh B.-C.,Chang B.S., Park K.-H.,Ha N.-C.,Kim H.-K.,Oh B.-H.,Oh T.-K. 2001. Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11.Biochemistry 40 (32): 9669–9676.DOI: 10.1021/bi010589u
  • Pointillart A., Fourdin A., Fontaine N. 1987. Importance of cereal phytase activity for phytate phosphorus utilization by growing pigs fed diets containing triticale or corn. Journal of Nutrition 117 (5): 907–913.
  • Rahmatullah S.M., Beveridge M.C.M. 1993. Ingestion of bacteria in suspension Indian major carps (Catla catla, Labo rohita) and Chinese carps (Hypophthalmichthys molitrix,Aristichthys nobilis). Hydrobiologia 264 (2): 79–84.DOI: 10.1007/BF00014095
  • Ray A.K., Roy T., Mondal S., Ringø E. 2010. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research 41 (10): 1462–1469.DOI: 10.1111/j.1365-2109.2009.02437.x
  • Ray A.K., Ghosh K., Ringø E. 2012. Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition (In press).DOI: 10.1111/j.1365-2095.2012.00943.x
  • Ringø E. 1993. The effect of chromic oxide (Cr2O3) on aerobic bacterial populations associated with the intestinal epithelial mucosa of Arctic charr (Salvelinus alpinus L.). Canadian Journal of Microbiology 39 (12): 1169–1173.DOI: 10.1139/m93-177
  • Ringø E., Strøm E., Tabachek J.-A. 1995. Intestinal mikroflora of salmonids: a review. Aquaculture Research 26 (10):773–789.DOI: 10.1111/j.1365-2109.1995.tb00870.x
  • Ringø E., Birkbeck T.H. 1999. Intestinal microflora of fish larvae and fry. Aquaculture Research 30 (2): 73–93.[Electronic version not available!]
  • Ringø E., Olsen R.E., Mayhew T.M., Myklebust R. 2003.Electron microscopy of the intestinal microflora of fish.Aquaculture 227 (1–4): 395–415.DOI: 10.1016/j.aquaculture.2003.05.001
  • Ringø E., Sperstad S.,Myklebust R.,Mayhew T.M., Olsen R.E.2006. The effect of dietary inulin on aerobic bacteria associated with hindgut of Arctic charr (Salvelinus alpinus L.).Aquaculture Research 37 (9): 891–897.DOI: 10.1111/j.1365-2109.2006.01509.x
  • Ringø E., Olsen R.E., Gifstad T.Ø., Dalmo R.A., Amlund H.,Hemre G.-I., Bake A.M. 2010. Prebiotics in aquaculture:a review. Aquaculture Nutrition 16 (2): 117–136.DOI: 10.1111/j.1365-2095.2009.00731.x
  • Robinson E.H., Li M.H., Manning B.B. 2002. Comparison of microbial phytase and dicalcium phosphate for growth and bone mineralization of pond-raised channel catfish, Ictalurus punctatus. Journal of Applied Aquaculture 12 (3): 81–88.DOI: 10.1300/J028v12n03_08
  • Roy T., Mondal S., Ray A.K. 2009. Phytase-producing bacteria in the digestive tracts of some freshwater fish.Aquaculture Research 40 (3): 344–353.DOI: 10.1111/j.1365-2109.2008.02100.x
  • Saha S., Roy R.N., Sen S.K., Ray A.K. 2006. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp,Ctenopharyngodon idella (Valenciennes). Aquaculture Research 37 (4): 380–388.DOI: 10.1111/j.1365-2109.2006.01442.x
  • Sardar P.,Randhawa H.S.,Abid M., Prabhakar S.K. 2007. Effect of dietary microbial phytase supplementation on growth performance,nutrient utilization, body compositions and haematobiochemical profiles of Cyprinus carpio (L.) fingerlings fed soyprotein- based diet. Aquaculture Nutrition 13 (6): 444–456.DOI: 10.1111/j.1365-2095.2007.00497.x
  • Selinger L.B., Forsberg C.W., Cheng K-J. 1996. The rumen:A unique source of enzymes for enhancing livestock production.Anaerobe 2 (5): 263–284.DOI: 10.1006/anae.1996.0036
  • Spanggaard B., Huber I., Nielsen J., Nielsen T., Appel K.F.,Gram L. 2000. The microflora of rainbow trout intestine:a comparison of traditional and molecular identification.Aquaculture 182 (1–2): 1–15.DOI: 10.1016/S0044-8486(99)00250-1
  • Stickney R.R., Shumway S.E. 1974. Occurrence of cellulase activity in the stomachs of fishes. Journal of Fish Biology 6 (6):779–790.DOI: 10.1111/j.1095-8649.1974.tb05120.x
  • Trust T.J., Sparrow R.A.H. 1974. The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology 20 (9): 1219–1228. DOI: 10.1139/m74-188
  • VanWeerd J.H., Khalaf K.H.A., Aartsen F.J., Tijssen P.A.T. 1999. Balance trials with African catfish Clarias gariepinus fed phytase-treated soybean meal-based diets. Aquaculture Nutrition 5 (2): 135–142.DOI: 10.1046/j.1365-2095.1999.00100.x
  • Walter H.E. 1984. Methods of enzymatic analysis. Verlag Chemie, Weinheim.
  • Xu D., Côté J.-C. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S–23S ITS nucleotide sequences. International Journal of Systematic and Evolutionary Microbiology 53 (3): 695–704.DOI: 10.1099/ijs.0.02346-0
  • Yanke L.J., Bae H.D., Selinger L.B., Cheng K.J. 1998.Phytase activity of anaerobic ruminal bacteria.Microbiology 144 (6): 1565–1573.DOI: 10.1099/00221287-144-6-1565
  • Yanke L.J., Selinger L.B., Cheng K.-J. 1999. Phytase activity of Selenomonas ruminantium: a preliminary characterization.Letters in Applied Microbiology 29 (1): 20–25.DOI: 10.1046/j.1365-2672.1999.00568.x
  • Zar J.H. 1999. Biostatistical Analysis. 4th edn. Pearson Education, Singapore (Indian Branch), New Delhi, India.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0145ee32-2ded-44e2-b4ca-aacebfc8abd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.