Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  yak
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
 The calcium-activated neutral proteases, μ- and m-calpain, along with their inhibitor, calpastatin, have been demonstrated to mediate a variety of Ca2+-dependent processes including signal transduction, cell proliferation, cell cycle progression, differentiation, apoptosis, membrane fusion, platelet activation and skeletal muscle protein degradation. The cDNA coding for yak calpastatin was amplified and cloned by RT-PCR to investigate and characterize the nucleotide/amino-acid sequence and to predict structure and function of the calpastatin. The present study suggests that the yak calpastatin gene encodes a protein of 786 amino acids that shares 99 % sequence identity with the amino-acid sequence of cattle calpastatin, and that the yak protein is composed of an N-terminal region (domains L and XL) and four repetitive homologous C-terminal domains (d1–d4), in which several prosite motifs are present including short peptide L54–64 (EVKPKEHTEPK in domain L) and GXXE/ DXTIPPXYR (in subdomain B), where X is a variable amino acid. Our results suggest the existence of other functional sites including potential phosphorylation sites for protein kinase C, cAMP- and cGMP-dependent protein kinase, casein kinase II, as well as N-myristoylation and amidation sites that play an important role in molecular regulation of the calpain/calpastatin system. The regulation of the calpain/calpastatin system is determined by the interaction between dIV and dVI in calpains and subdomains A, B, and C in calpastatin.
Grazing can change plant community composition and structure, which may alter the functions of the shrub meadow ecosystem. Grazing effects on Potentilla fruticosa shrub community in the headwater region of the Yellow River, which is in core area of the Qinghai-Tibet Plateau, are studied to provide adequate protection decision-making. We investigated continuous grazing and seasonal enclosure effects on P. fruticosa shrub communities. Three sites of P. fruticosa shrub comprising both continuous grazing and seasonal enclosure treatments were selected. The size of each fenced plot of P. fruticosa shrub was about 3000 m², the stocking rate was about 5 heads per 100 m² in continuous grazing treatment. Three samplings were made in each growing season of 2003 and 2004. Cover of vegetation, plant species composition and vegetation height were investigated in seven 1 × 1 m quadrates in each treatment. Above-ground biomass was measured in five 0.5 × 0.5 m quadrates. Shrub, forb, graminoid and sedge plant materials were clipped at ground level and oven-dried at 85ºC to a constant mass. Plant composition was affected by long term continuous grazing and changes were caused by forb species shifting. No apparent difference in species richness between the grazed and ungrazed communities over the growing months were found but the Shannon’s diversity indices of the grazed communities in June and July were higher than that of the ungrazed but lower in the late August and September. Live vegetation cover was reduced by 6.7%, 7.3% and 11.5%, respectively, owing to grazing in July, August and September, but not in June (P> 0.05). Forbs took up more than 50% cover of the vegetation in both grazed and ungrazed treatments. Relative cover of sedges and forbs in ungrazed treatment decreased in July, August and September, while that of graminoids increased more than 70% in the same period. Live vegetation height was reduced by 27% (2004) and 23% (2003) in late August and early September, but not in early growing season. Grazing reduced total above-ground biomass by 35%, 37% and 36% in July, August and early September, respectively, and the reduction was mainly in forb biomass. Continuous grazing affects plant composition and species diversity. The quantitative characteristics of P. fruticosa communities were influenced by grazing over growing months, but the effects were offset by non-growing season grazing.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.