Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 53

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  wind
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
7
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Lunar nodal tide in the Baltic Sea

86%
The nodal tide in the Baltic Sea was studied on the basis of the Stockholm tide-gauge readings for 1825–1984; data from the tide gauge at Świnoujście for the same period provided comparative material. The Stockholm readings are highly accurate and are considered representative of sea levels in the whole Baltic; hence, the final computations were performed for the readings from this particular tide gauge for the period 1888–1980. The tidal amplitude obtained from measurements uncorrected for atmospheric pressure or wind field was compared with that forced only by atmospheric effects. The amplitude of the recorded nodal tide was the same as the equilibrium tide amplitude calculated for Stockholm. Calculations for equilibrium tide amplitudes were also performed for the extreme latitudes of the Baltic basin.
Since 1992 lidar-based measurements have been carried out under various meteorological conditions and at various times of the year. The aerosol optical properties were determined in the marine boundary layer as a function of altitude using such factors as wind direction, duration and velocity and aerosol size distribution and concentration. It was confirmed that in all cases, the total aerosol concentration, size distribution and aerosol extinction increase with wind speed but decrease with altitude. In the range of wind velocities from 1 to 15 m s−1 the mean aerosol optical thickness of the atmosphere (VIS) obtained from the lidar varied from 0.1 to 0.38 for offshore winds and from 0.01 to about 0.1 for onshore winds, while the ˚Angstr¨om parameter for VIS oscillated around 0.65 for onshore winds and around 1 for offshore winds. Both parameters depended strongly on the history of the air mass above the Baltic Sea. Such aerosol optical thicknesses are in agreement with those obtained by other researchers in the Baltic Sea area.
The response of semi-realistic wind speed increase scenarios to the mean sea level and current regime of semi-enclosed sub-basins in the Baltic Sea is studied with a 2D hydrodynamic model. According to the model output of spatial mean sea levels, an increase in the westerly wind component by 2 m s−1 leads, for example, to a mean sea level rise of up to 3 cm in windward locations in the study area. The sea level change patterns depend on the wind scenario and coastline configuration. The increases in wind speed considered here also lead to enhanced water exchange through the straits, strengthening of the basin-scale circulation, enhancement of up- and downwelling, and increased bottom stresses near coasts.
A plethora of physical parameters, such as hydro-, litho- and morpho-dynamic char- acteristics, are essential for understanding the response of coastal systems to intense sea states in terms of sediment transport and shoreline evolution. Nowadays, numerical models are extensively applied to meet the above needs and support coastal planning and management. In the present work, a 2DH dynamic modelling system is used for simulating the hydrodynamic and meteorological/ oceanographic characteristics of the Saronic Gulf, in order to examine circulation patterns and predict sediment transport phenomena under high wave conditions at the coast of Varkiza, a sandy beach in the southern Attica, Greece. Time series of wind and wave data were used as input at the open boundaries of the model domain while the model was calibrated and validated through (linear and directional) statistical measures with respect to in situ wave measurements, since there was lack of hydrodynamic data at the site of interest.The simulation period of the model was between January 3 and February 19, 2013, with consecutive high waves in-between. The good agreement of the numerical results from the wave and hydrodynamic model with in situ measurements confirmed the suitability of the model for the support of sediment transport rates at Varkiza coastal segment. Model results reveal that there is a counter-clockwise water circulation during high waves that contribute to the erosion of the examined beach, which is also confirmed by independent field measurements.
The main aim of the article is to present the climatology of the peak wind gust frequency in Poland caused by the impact of both atmospheric circulation and the presence of thunderstorm clouds. Nine meteorological stations for the measurement period of 2001-2015 were taken into account. Only SYNOP reports with a peak wind gust higher or equal to 15 m s-1 in thunderstorm and non-thunderstorm days are considered in this study. The results indicate that the highest threat in terms of frequency and strength of peak wind gusts due to convection occurs in July. In winter, thunderstorms are rare, but if they occur, about 80% of them produce wind gusts exceeding a threshold of 15 m s-1. Peak wind gusts in a non-thunderstorm days are the highest and the most frequent in January, and are at a minimum during summer. Comparing both types, peak wind gusts during days with a thunderstorm were on average stronger than those without an involved convection. This indicated that convection was an important factor in enhancing the strength of a wind gust. The highest value in our base was 34 m s-1, recorded in Kraków on 8th July 2015 within the occurrence of a severe thunderstorm, while the highest value in a day without a thunderstorm was 33 m s-1, recorded in Łódź on 31st January 2002.
Based on wind data from the Vilsandi meteorological station and a 5-month calibration measurement with a bottom-mounted Recording Doppler Current Profiler (RDCP), a semi-empirical hindcast of wave parameters near the quickly developing accumulative Kelba Spit is presented for the period 1966–2006. The significant wave heights with a gross mean value of 0.56 m exhibited some quasiperiodic cycles, with the last high stage in 1980–95 and a decreasing overall trend of −0.001 m per year. At the same time, both the frequency and intensity of high wave events showed rising trends, and the mean wave heights during winter (December to February) increased as well. As the study area has the longest fetches in westerly directions, the discussed tendencies in wave conditions are sensitive to regional changes in the wind climate and can be related to a decrease in the local average wind speed on the one hand, but an intensification of westerly winds, storm events and the wintertime NAO index on the other. The roughest wave storms on record were associated with prominent W-storms on 2 November 1969 and 9 January 2005; a few other extreme wind events (e.g. in 1967, 1999, 2001), however, did not yield equally prominent waves.
The paper provides a simple and analytical method which can be used to give estimates of the wave-induced bottom shear stress for very rough beds and mud beds in shallow water based on wind statistics in deep water. This is exemplified by using long-term wind statistics from the northern North Sea, and by providing examples representing realistic field conditions. Based on, for example, global wind statistics, the present results can be used to make estimates of the bottom shear stress in shallow water.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.