Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 54

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  tensile strength
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
100%
The investigations on mechanical properties of reed stems face numerous difficulties, because of their anisotropy, heterogeneity, shell-like structure, small lateral dimensions of stems and huge diversity of species and habitats of origination. Aware of all difficulties to cope with, the basic experiment has been conducted, that is the uni-axial tension test for reed stems, with- and without joints. The strain-stress relation, at tension, displayed an exponential character, showing material stiffening with the growth of strain. Test results incline to conclusion, that stem-pieces without joints are equally stiff as pieces with joints, however, they are twice as strong as the latter. It means, that joints can be perceived as fragile (in the sense: “brittle”) discontinuity in structure of reed stems. The results of the test have been put through critical estimate and analysis tending to statistical modelling of the load-carrying ability of reed stems.
The study aims to elucidate the impact of organic inputs on strength and structural stability of aggregates in a sandy loam soil. Tensile strength, friability and water stability of aggregates, and the carbon contents in bulk soil and in large macro (>2 mm), small macro (0.25-2 mm), micro (0.053-0.25 mm) and silt+clay size (<0.053) aggregates were evaluated in soils from a long-term experiment with rice-wheat rotation at Modipuram, India, with different sources and amounts of organic C inputs as partial substitution of N fertilizer. Addition of organic substrates significantly improved soil organic C contents, but the type and source of inputs had different impacts. Tensile strength of aggregates decreased and friability increased through organic inputs, with a maximum effect under green gram residue (rice)-farmyard manure (wheat) substitution. Higher macroaggregates in the crop residue- and farmyard manure-treated soils resulted in a higher aggregate mean weight diameter, which also had higher soil organic C contents. The bulk soil organic C had a strong relation with the mean weight diameter of aggregates, but the soil organic C content in all aggregate fractions was not necessarily effective for aggregate stability. The soil organic C content in large macroaggregates (2-8 mm) had a significant positive effect on aggregate stability, although a reverse effect was observed for aggregates <0.25 mm. Partial substitution of nitrogen by organic substrates improved aggregate properties and the soil organic C content in bulk soil and aggregate fractions, although the relative effect varied with the source and amount of the organic inputs.
Background and Aims: Leaf morphology, anatomy, degree of lignification, and tensile strength were studied during vegetative phase change in an inbred line of Zea mays (OH43 x W23) to determine factors that influence mechanical properties during development. Methods: Tensometer, light microscopy, histochemistry. Key results: Mature leaf length increased linearly with plant development, peaked at leaves 7 and 8 (corresponding to the onset of the adult phase) and then declined. Leaf width was stable for leaves 1 through 3, increased to leaf 7, remained stable to leaf 10, and then declined through leaf 13. Lamina thickness was highest for leaf 1 and decreased throughout development. Leaf failure load to width ratio and failure load to thickness ratio increased with development suggesting that changes in leaf morphology during development do not entirely account for increases in failure load. Histochemical analyses revealed that leaf tensile strength correlates with percent lignification and the onset of anatomical adult features at various developmental stages. Conclusions: These data demonstrate that in Zea mays lignification of the midrib parenchyma and epidermis may be directly correlated with increased tensile strength associated with phase change from juvenility to adulthood. Failure load and resultant tensile strength values are primarily determined by the percent tissue lignification and the appearance of leaf architectural characters that are associated with the transition from the juvenile to the adult phase. Increased mechanical stability that occurs during the phase transition from juvenility to adulthood may signify a fundamental change in strategy for an individual plant from rapid growth (survival) to reproduction.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.