Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  skaning laserowy
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Lotniczy skaning laserowy jest obecnie jedną z najwydajniejszych technik pozyskiwania danych o powierzchni i elementach pokrycia terenu. Dynamiczny rozwój technologii pozwolił na szersze zastosowanie systemów typu full-waveform, które rejestrują kształt całej krzywej fali powracającej do odbiornika. W celu pozyskania dodatkowych informacji o obiektach, od których nastąpiło odbicie, zapisane dyskretne wartości przybliża się za pomocą zestawu funkcji parametrycznych. Prace badawcze koncentrują się na tworzeniu algorytmów pozwalających na przeprowadzenie szybkiej dekompozycji fali przy jednoczesnym wykryciu i aproksymacji słabych oraz nakładających się ech. Większość istniejących metod dekompozycji wymaga znajomości liczby wierzchołków występujących w sygnale i określenia przybliżonych parametrów wpasowywanych krzywych. W artykule zaproponowano alternatywny algorytm będący modyfikacją metody progresywnej, który pozwala na skuteczne przeprowadzenie dekompozycji sygnału z pominięciem prac przygotowawczych. Metoda polega na iteracyjnym wpasowaniu krzywych za pomocą algorytmu Levenberga–Marquardta z zastosowaniem wagowania poszczególnych sampli. Wykorzystując dane testowe, wykonano dwuetapową walidację algorytmu. W pierwszej kolejności zbadano wielkość i rozkład błędów aproksymacji powstałych podczas dekompozycji sygnału przy zastosowaniu funkcji Gaussa. W drugim etapie porównano otrzymane wyniki z wynikami aproksymacji za pomocą standardowej procedury. Na podstawie walidacji algorytmu można stwierdzić, że umożliwia on prawidłowe wykrycie wszystkich komponentów oraz ich poprawną aproksymację przy użyciu wybranego modelu matematycznego.
Dane lotniczego skanowania laserowego (ALS) pozyskiwane są najczęściej na potrzeby budowy numerycznych modeli wysokościowych. W Polsce dane takie pozyskane zostały dla obszaru niemal całego kraju w ramach projektu ISOK, związanego z osłoną przed zagrożeniami naturalnymi. Dane te zostały wykorzystane w niniejszej pracy do modelowania obrysów budynków. W tym celu zaproponowano algorytm będący kombinacją algorytmu α-shape do detekcji konturów budynków oraz iteracyjnego ogólnego modelu wyrównawczego do aproksymacji rzutów ortogonalnych ścian budynków. Identyfikację punktów reprezentujących obrysy budynków wykonano na podstawie chmury punktów, z której odrzucono punkty powyżej zadanej wysokości progowej. Identyfikacja obrysów budynków jako otoczki pustych powierzchni reprezentujących budynki dokładniej przybliża rzeczywiste położenie przyziemi ścian budynków. Do weryfikacji algorytmu wykorzystano chmurę punktów o gęstości 12 pkt/m2 reprezentującą miejski obszar zurbanizowany o zabudowie regularnej. Wyniki modelowania 2D budynków porównano z ich reprezentacją w bazie Ewidencji Gruntów i Budynków oraz obliczono odchyłki liniowe odpowiadających sobie narożników. Otrzymano średnią wartość odchyłki liniowej na poziomie 0,56 m. Wartość ta jest zgodna z nominalną dokładnością sytuacyjną danych ALS projektu ISOK. Błąd średniokwadratowy policzony na podstawie odchyłek liniowych wynosi 0,64 m. Otrzymane wyniki modelowania spełniają wymagania dokładnościowe Bazy Danych Obiektów Topograficznych 1:10000 (BDOT10k) i mogą być wykorzystane do jej weryfikacji, aktualizacji bądź zasilania.
W artykule została opisana bardzo popularna struktura danych, jaką jest chmura punktów. Omówiono różne metody jej pozyskiwania, za- równo dla bardzo małych obiektów, za pomocą skanerów stykowych, jak i dla wielkich przestrzeni – przy zastosowaniu skanerów laserowych. Przedstawiono także przebieg klasyfikacji punktów uzyskanych podczas skaningu oraz dziedziny, w których dotychczas wykorzystywane są dane tego typu, i konkretne przykłady ich użycia w ochronie środowiska.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.