Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  regenerative medicine
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Adult bone marrow-derived mesenchymal stem cells (hMSCs) display a spectrum of functional properties. Transplantation of these cells improves the clinical outcome in experimental models of cerebral ischemia and spinal cord injury. Therapeutic effects have been reported in stroke after the systemic delivery of MSCs. A minimally invasive, intraarterial route is an attractive method for stem cell transplantation to the injured brain. However, MSCs lack the intrinsic mechanisms that enable homing of the cells to the area of infarction. Recent studies suggest that genetic manipulation can promote the forced expression of certain molecules responsible for adhesion and transendothelial migration of systemically delivered cells. It is anticipated that, for cell homing to the brain after intra-arterial delivery, the transient expression of integrins should be sufficient for diapedesis to occur. Since the capacity of MSCs to undergo functional transfection using pDNA is very low, we investigated an mRNA transfection method for the expression of transgenes in MSCs in order to overcome the limitations of the pDNA approach. Methods: Human mesenchymal stem cells (hMSC, PT-2501, Lonza) were thawed and cultured in medium MSCBM (PT-3238, Lonza) supplemented with 10% MCGS (PT-4106E, Lonza), L-glutamine (PT4107E, Lonza), and gentamicin sulfate (GA-1000, PT-4504E, Lonza). Cells were maintained in a humidified atmosphere at 37°C and 5% CO2 using 75 cm2 flasks. For transfection experiments, hMSCs were transferred to 24-well plates and seeded at a density of 15 000 cells/well. For transgene induction experiments, pDNA-eGFP (BD Biosciences) at a dose of 0.5 and 1.0 µg/well, and mRNA-eGFP (StemGent) at doses of 0.12, 0.25, and 0.5 µg/well were used. The Lipofectamine® 2000 (Invitrogen), TransIT-2020 (Mirus), and StemfectTM RNA Transfection Kit (StemGent) were used as transfection agents. After transfection, cells were maintained in culture conditions up to 21 days. Transfection efficiency was assessed by confocal microscopy using GFP fluorescent signal detection. Results: MSC pDNA-eGFP transfection results in a dramatically low efficiency, less than 1% of the cell population in each of the tested conditions. In contrast, mRNA-eGFP transfection resulted in an efficiency exceeding 95% in each of the tested conditions. This difference was highly statistically significant (P<0.001). Furthermore, cellular GFP level, and the persistence of transfection was dependent on the mRNA dose and the type of transfection agent. It was found that the dose of mRNA-eGFP 0.5 µg/well and the use of Lipofectamine was the most effective method with transgene expression up to three weeks. Conclusions: The mRNA transfection is a robust, clinically applicable tool for inducing the transient expression of transgenes in hMSCs, which are otherwise difficult to transfect by vectors that do not incorporate into the host genome. Using this method, application of engineered MSC could revolutionize regenerative medicine. Supported by a National Centre for Research and Development grant No 101 in ERA-NET NEURON project: “MEMS-IRBI”
The goal of regenerative medicine is to ameliorate irreversible destruction of brain tissue by harnessing the power of stem cells in the process of neurogenesis. Several types of stem cells, including mesenchymal stem cells, hematopoietic stem cells, as well as neural cells differentiated from embryonic stem cell lines, have been proposed as potential therapeutic vehicles. In this review paper we will discuss a perspective of stem cell therapies for neurological disorders with special emphasis on potential application of cells isolated from adult tissues. In support of this our group found that murine bone marrow contains a mobile population of Oct-4+CXCR4+SSEA-1+Sca-1+lin–CD45– very small embryonic-like stem cells (VSELs) that are mobilized into peripheral blood in a murine stroke model. The number of these cells in circulation increases also after pharmacological mobilization by administration of granulocyte colony stimulating factor (G-CSF). Recently we found that VSELs are present in various non-hematopoietic adult organs and, interestingly, our data indicate that the brain contains a high number of cells that display the VSEL phenotype. Based on our published data both in human and mice we postulate that VSELs are a mobile population of epiblast/germ line-derived stem cells and play an important role as an organ-residing reserve population of pluripotent stem cells that give rise to stem cells committed to particular organs and tissues - including neural tissue. In conclusion human VSELs could be potentially harnessed in regenerative medicine as a source of stem cells for neurogenesis.
Human adipose-derived stem cells (huADSC) were generated from fat tissue of a 65-year-old male donor. Flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) analyses indicated that the huADSC express neural cell proteins (MAP2, GFAP, nestin and β-III tubulin), neurotrophic growth factors (BDNF and GDNF), and the chemotactic factor CXCR4 and its corresponding ligand CXCL12. In addition, huADSC expressed the characteristic mesenchymal stem cell (MSC) markers CD29, CD44, CD73, CD90, CD105 and HLA class I. The huADSC were employed, via a right femoral vein injection, to treat rats inflicted with experimental intracerebral hemorrhage (ICH). Behavioral measurement on the experimental animals, seven days after the huADSC therapy, showed a significant functional improvement in the rats with stem cell therapy in comparison with rats of the control group without the stem cell therapy. The injected huADSC were detectable in the brains of the huADSC treated rats as determined by histochemistry analysis, suggesting a role of the infused huADSC in facilitating functional recovery of the experimental animals with ICH induced stroke.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.