Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  prokaryotic cell
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
Content available remote

Heat shock response in gastrointestinal tract

100%
Methyl methanesulfonate (MMS) is an SN2 type alkylating agent which predominantly methylates nitrogen atoms in purines. Among the methylated bases 3meA and 3meG are highly mutagenic and toxic. The excision of these lesions leads to the formation of apurinic (AP) sites and subsequently to AT-->TA or GC-->TA transversions. The in vivo method based on phenotypic analysis of Arg+ revertants of Escherichia coli K12 and sensitivity to T4 nonsense mutants has been used to estimate the specificity of MMS induced mutations. In the E. coli arg-his-thr- (AB1157) strain MMS induces argE3(oc)-->Arg+ revertants of which 70-80% arise by supL suppressor formation as a result of AT-->TA transversions. The remaining 20-30% arise by supB and supE(oc) suppressor formation as a result of GC-->AT transitions. The level of AT-->TA transversions decreases during starvation. This is a consequence of action of the repair mechanism called mutation frequency decline. This system which is a transcription coupled variant of nucleotide excision repair was discovered in UV induced mutations. We describe the mutation frequency decline phenomenon for MMS mutagenesis. MMS is a very efficient inducer of the SOS response and a umuDC dependent mutagen. In MMS treated E. coli cells mutated in umuDC genes the class of AT-->TA transversions dramatically diminishes. A plasmid bearing UmuD(D')C proteins can supplement chromosomal deletion of umuDC operon: a plasmid harbouring umuD'C is more efficient in comparison to that harbouring umuDC. Moreover, plasmids isolated from MMS treated and transiently starved E. coli AB1157 cells harbouring umuD(D')C genes have shown the repair of AP sites by a system which involves the UmuD'C or at least UmuD' protein.
Type II DNA topoisomerases are required for the segregation of genomic DNA at cell division in prokaryotic and eukaryotic cells, and inhibitors of these enzymes are potential cytotoxic agents in both prokaryotes and eukaryotes. The bacterial member of the topoisomerase II family, DNA gyrase, and the chemotherapeutic agents which target it are the subject of a recent review (Maxwell, A. et al., 1993, in Molecular Biology of DNA Topoisomerases, Andoh, T. et al., eds.,pp. 21-30, CRC Press, Boca Raton). Here we present an overview of current knowledge of eukaryotic topoisomerase II and the anticancer agents which target this enzyme, focussing predominantly on new observations and recent reports and reviews.
Heat shock proteins (Hsp) are the group of proteins observed in both prokaryotic and eukaryotic cell types. Hsp synthesis takes place in response to many environmental conditions, including ultraviolet radiation, heavy metal ions, hypoxia and toxic agents. Many authors have suggested that Hsp can be used in immunoprophylaxis, yet Hsp70 proteins expressed in bovine leukocytes have not been fully characterized. Hence the aim of this study was to evaluate the expression of Hsp70 proteins in bovine leukocytes exposed to temp. 41℃. The material for the study consisted of bovine white blood cells incubated at 41℃ for 2 hours. SDS-Page electrophoresis, Western blotting, and two-dimensional electrophoresis (2D) were performed to estimate the proteins obtained. The results of the study confirmed the influence of the temperature of 41℃ on induction of Hsp70 in bovine leukocytes. These proteins were mainly localized within molecular mass 70kDa. Some of the proteins with molecular mass from 20 to 50 kDa also showed positive reactions in Western blotting with anti-Hsp70 antibodies. Analysis of 2D electrophoresis showed a change in the localization of these proteins in the pH gradient. It can be postulated that analysis of Hsp70 expression in bovine leukocytes can be a very helpful marker for evaluating an organism’s adaptation to environmental heat stress. The proteins obtained also showed immunological reactivity with rabbit antibodies in Western blotting reactions, indicating that they can be used as protective factors in the pathogenesis of many diseases.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.