Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 29

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  pepsin
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
 In the beginning of the 20th century, enzymes with proteolytic activity were classified as peptidases, Erepsin, and proteases. Among these, pepsin, trypsin, and autolytic enzymes were of the protease class. Spleen-derived proteases were poorly characterized until Sven Gustaf Hedin performed several digestion experiments with bovine spleen. He incubated minced bovine spleen under acidic or neutral conditions and characterized two active proteases; the results were published in 1903. The first protease was named α-protease and was active under neutral conditions. The second was named β-protease and was active under acidic conditions. We replicated Hedin's experiments according to his methods and found, by using activity-based probes to visualize proteases, that the historical α-protease is the present-day serine protease cathepsin G (CatG), which is known to be important in several immune processes, including antigen processing, chemotaxis, and activation of surface receptors. The β-protease, however, comprised different proteases including CatX, B, S, and D. We suggest that Hedin described CatG activity in bovine spleen over 100 years ago.
Gastric acid and pepsin secretions result from the interplay of neurohormonal factors with stimulatory and inhibitory actions on oxyntic glands. At the turn of XIX century, the notion of nervism or entire neural control of digestive functions, developed by Pavlov prevailed. However, in the second part of XX century, hormonal control has been thought to play a major role in the mechanism of gastric secretion, especially gastrin, which was isolated and synthesized in 1964 by Gregory. Polish traces in gastroenterological history started with the discovery of histamine, a non-nervous and non-gastrin compound in oxyntic mucosa by L. Popielski in 1916, who found that this amine is the most potent and direct stimulant of gastric acid secretion. This histamine concept was supported by leading American gastroenterologists such as A.C. Ivy, championed later by C.F. Code, and clinically applied for testing gastric secretion by K. Kowalewski. Recently, it received a strong support from pharmacological research when J. Black designed H2-receptors antagonists, which were first discovered by M.I. Grossman and S.J. Konturek to inhibit not only histamine-, but also meal- and vagally-induced gastric acid secretion, thus reinforcing the notion of the crucial significance of histamine in the control of gastric secretion as the final common chemostimulator. In conclusion, Polish traces appear to be substantial in gastric history due: 1) to discovery by Popielski that histamine is a major, direct stimulus of gastric secretion; 2) to clinical application of this agent by Kowalewski in testing maximal gastric secretory activity; and 3) to clinical use of histamine H2-antagonists in control of gastric acid secretion and treatment of peptic ulcers.
Increasing the potency of antihypertensive food-derived peptides is a critical and important step in the development of natural drugs for cardiovascular diseases prevention. We have proposed the egg-white protein precipitate (EWPP) obtained as a byproduct of cystatin and lysozyme isolation as a potential source of ACE-inhibitory peptides derived by pepsin digestion. The results indicated that hydrolysis of EWPP with pepsin produced the ACE inhibitory activity. During 3-h hydrolysis (DH: 38.3%), the IC50 value of EWPP hydrolysate was signifi cantly increased and fi nally reached IC50=643.1 μg/mL. This hydrolysate was further fractionated by RP-HPLC. The peptide fraction exhibiting the highest ACE inhibitory activity was rechromatographed. Three peptide subfractions exhibiting ACE-inhibitory activities of 69.0, 25.0, and 37.6 μg/mL were further characterised. In each of them, mixtures of peptides with different molecular masses were observed.
The larvae of Anisakis simplex had the largest influence upon decreasing the activity of porcine pepsin. The activity of that enzyme in tests, where the larvae were present during the entire period of incubation, was lower than in the controls. No similar trends were observed in case of the solutions with bovine and porcine trypsin. The activity of those enzymes in the solutions containing the larvae was higher than in the controls. Only the activity of porcine trypsin after 10 h of incubation was slightly lower in the experimental sample than in the control, however, during the later hours the dynamics of the activity decrease of that enzyme in the controls was higher than in the experimental samples. The recorded activity of papain in the samples containing the larvae was higher than that in the controls during the entire time of the experiment.
The objective of this study was to investigate the influence of the concentration of Al3+ ions and the substrate/enzyme ratio on pepsin and trypsin activity in vitro. The experimental design was a combination of three Al3+ ion concentrations (0.25; 2.5 and 25.0 μg Al3+/ml of reaction solution) and two substrate/enzyme ratios (S/E = 10 and 100 for pepsin, and 100 and 1000 for trypsin). Enzymatic activity was determined by the Folin method based on the reaction of tyrosine with the Folin reagent. It was found that the concentration of Al3+ ions influenced activity of pepsin which increased with the increasing metal ion concentration in the reaction milieu. Al3+ ions did not affect activity of trypsin. Proteolitic activity of pepsin and trypsin depended on substrate/enzyme ratio. Higher concentration of substrate decreased efficacy of enzymatic protein breakdown in vitro.
Anticoagulative effect of pepsin is observed in vitro when its concentration is 36 μM and higher. This effect is due to inhibition of fibrin monomer polimerization. Protamine abolishes anticoagulative effect of pepsin. Pepsin does not influence platelet aggregation induced by ADP and collagen.
Ustalono stosunki molowe pepsyny i protaminy w nierozpuszczalnych kompleksach oraz wpływ czynników fizycznych i chemicznych na trwałość tych kompleksów.
Ustalono stosunki molowe pepsyny i białek zasadowych (histon, lizozym, cytochrom c, rybonukleaza) w nierozpuszczalnych kompleksach oraz wpływ czynników fizycznych i chemicznych na trwałość tych kompleksów.
Trawienie pepsyną ekstraktów nasion spożywanych przez człowieka powoduje obniżenie aktywności trypsyny i chymotrypsyny.
Oceniono wpływ metanolu, formaldehydu i mrówczanu sodu na aktywność preparatu pepsyny i pepsyny występującej w soku żołądkowym.
The purpose of this study was to develop an acute animal model of reflux esophagitis, which would be suitable to induce the esophageal damage caused by gastric acid reflux, thus mimicking the esophageal injury of human gastroesophageal reflux disease (GERD). Global research indicates that GERD is rapidly increasing among the world's population. NSAIDs are known to induce gastrointestinal damage and low doses of aspirin (ASA) have been shown to increase the incidences of GERD in humans. Gastric acid and pepsin secretion and enhanced COX-2 expression were implicated in the pathogenesis of reflux esophagitis, but the effect of selective COX-2 inhibitors against lesions induced by the reflux of gastric acid content into esophagus has not been thoroughly studied. Here, we compared the effect of aspirin (ASA) and so called "safe" nitric oxide (NO) derivative of ASA with those of non-selective and selective cyclooxygenase (COX)-1 and COX-2 in rat model of reflux esophagitis. Reflux esophagitis was induced in anesthetized rats by ligating the pylorus and limiting ridge transitional region between the forestomach and the corpus of stomach. Subsequently, the total gastric reservoir to store gastric juice was greatly diminished, resulting in the reflux of this juice into the esophagus. Rats with esophagitis received intragastric (i.g.) pretreatment either with: 1) vehicle (saline), 2) ASA or NO-ASA (100 mg/kg); 3) the non-selective COX inhibitor, indomethacin (5 mg/kg); 4) the selective COX-1 inhibitor, SC-560 (10 mg/kg), and 5) the selective COX-2 inhibitor, celecoxib (5 mg/kg). In a separate series of rats with reflux oesophagitis, the efficacy of ASA combined with a donor of NO, glyceryl trinitrate (GTN; 10 mg/kg i.g.) to prevent esophageal mucosal injury was investigated. Four hours after induction of esophagitis the gross mucosal damage was graded with a macroscopic lesion index (LI) from 0-6. The esophageal blood flow (EBF) was determined by H2-gas clearance technique, the oesophageal mucosal and blood samples were collected for histology and analysis of the RT-PCR expression and release of proinflammatory cytokines IL-1ß, TNF- and IL-6 using specific ELISA. The exposure of the esophagus to reflux of gastric acid time-dependently increased the esophageal LI and morphologic damage, and decreased EBF with the most significant changes observed at 4 hrs after the ligation procedure. The pretreatment with native ASA in the dose that suppressed the generation of mucosal PGE2, enhanced gross and histologic esophageal damage and produced a significant fall in EBF. NO-ASA or ASA coupled with GTN counteracted the aggravation of the damage and accompanying fall in EBF when compared with native ASA applied alone to rats with esophagitis. The proinflammatory cytokines IL-1ß and TNF- were overexpressed in rats with esophagitis and those pretreated with ASA but this effect was significantly attenuated by NO-ASA. Plasma IL-1ß, TNF- and IL-6 were negligible in the intact rats but significantly increased in those with esophagitis, with this effect being further enhanced by non-selective (indomethacin) and selective (SC-560, celecoxib) COX-1 and COX-2 inhibitors. We conclude that conventional NSAID such as aspirin augments esophagitis, while NO-ASA exerts the beneficial protective effect against reflux esophagitis via the enhancement of esophageal microcirculation due to NO release and an inhibitory effect on expression and release of pro-inflammatory cytokines.
W pracy określono wpływ obecności i stężenia jonów Pb (II) i Cd (II) oraz stężenia substratu na aktywność pepsyny i trypsyny w warunkach in vitro. Stwierdzono znaczący wzrost aktywności pepsyny ze wzrostem stężenia jonów tych metali w układzie reakcyjnym, natomiast duży nadmiar substratu w stosunku do enzymu obniżał aktywność obu enzymów.
Określono wpływy produktów trypsynowej degradacji protaminy na tworzenie kompleksów z pepsyną i na aktywność proteolityczną tego enzymu. Postępująca w czasie degradacja protaminy powoduje stopniowe obniżenie jej zdolności do tworzenia kompleksów z pepsyną i hamowania aktywności pepsyny.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.