Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  pH effect
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Phenolics exudation by imbibed seeds and roots of intact lupin plants (Lupinus albus L.) was studied during the first 4 days of growth by a new agar test with specific reagents for phenolics (Gibbs reagent, Naturstoffreagenz A). Comparative studies of the phenolics exudation reveal that legumes exude different phenolics (even if not qualitatively, then at least quan­titatively) than oat. The exudation of phenolics starts very quickly after the imbibition of seeds and can be visualized as early as 24 h after sowing. In older seedlings, the exudation of phenolics can be detected along root zones and is influenced by nitrate and pH. At acidic pH, nitrate reduces phenolics exudation, but at pH 7.5 the exudation of phenolics becomes restricted to only some root zones. Nitrate must be present in the rooting media for at least 24 h to cause visible changes in the pattern of exudation at different pH values.
When exposed extreme environmental conditions such as sea water, bacteria have been shown different survival strategy for continue their life. One of this strategy known as viable but nonculturable (VBNC) state which is very important for nondifferiation bacteria. VBNC cells cause serious human health problems. Little is known, however, about the genetic mechanisms underlying the VBNC state. Under different environmental conditions, porins are important in the survival strategy of bacteria. EnvZ/OmpR work together as regulators of ompF and ompC gene expression. It is known that the EnvZ system has a role in VBNC state. In this study we tried to find out the viability of EnvZ, OmpC and OmpF mutant E. coli under stress effect of osmolarity, pH and starvation. Bacteria were suspended in filtered-autoclaved sea water microcosms and numbers determined over 25 day incubation periods by plate count (PC), direct viable count (DVC) and count of cells capable of respiration (RCC). As regard to results, alkaline pH affected E. coli more than acidic pH, which led to decline in number. On the contrary glycine betaine addition to sea water protected E. coli porin mutants and also reduced the death rate of bacteria. Under the effect of pH, osmotic stress and starvation stress, wild type E. coli and porin mutants entered a dormant state or became VBNC with the exception of MSZ31 (envZ mutant) E.coli cells which did not enter the VBNC state under the three tested stress conditions. This study is the first report to demonstrate that E. coli could not enter the VBNC state in the lack of EnvZ product under the stress of osmolarity, pH and starvation and the relationship between EnvZ and VBNC state are not affected by pH, osmolarity and starvation.
The sorption behaviour of divalent cations M+ (Cu, Pb and Zn) and trivalent cations M3+ (Fe, Al) with humic acid isolated from oxidized coal (Hazro,SE Anatolia,Turkey) was followed in aqueous solution. Coal humic acid and metal ion interaction was investigated with special emphasis on the effects of pH, metal ion concentration and humic acid concentration. It has been found that the interaction of humic acid with metal ions in solution increases with pH, decreases with metal ion concentration and increases with humic acid concentration. The differences in sorption ability of particular metal ions on oxidized coal-derived humic acid are Fe> Pb> Cu> Al> Zn and Fe> Pb> Al> Cu> Zn at pH 2.5 and 3.5, respectively, while they are Fe=Pb=Cu=Al> Zn at both pH 4.5 and 5.5. The interaction of some trivalent (Fe, Al) and divalent(Cu, Pb, Zn) metal ions with humic acid prepared from coal was also studied using FTiR spectroscopy. This has proven helpful with respect to metal binding to understand better the potential sites of binding within the humic acid. Infrared spectroscopy showed the participation of cOOH and OH groups in binding to the metal ions.
Ozonation was carried out for decolorization and COD removal of raw and anaerobically treated UASB (upflow anaerobic sludge blanket) combined industrial (mainly textile) effluent in a lab-scale bubble column reactor. Ozonation of anaerobic bioprocess effluent at a dose of 300 mg/h for 10 min resulted in 81% color and 75% COD removal (100 mgO3/80 mg COD) while for raw wastewater 25 min ozonation furnished 51% color and 67% COD removal (250 mgO₃/345 mg COD). Optimal process conditions for biotreated effluent (pH = 8 and temperature = 25°C) resulted in 100% color and 96% COD removal for 10 min ozonation (100 mgO₃/104 mg COD). Electrical energy comparison demonstrated that post ozonation required less electrical energy, 16 and 2.9 times as compared to pre ozonation.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.