Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 587

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 30 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  oxidative stress
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 30 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Using open top chambers, the effects of elevated O₃ (80 nmol mol⁻¹) and elevated CO₂ (700 µmol mol⁻¹), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O₃ increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO₂, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O₃ stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO₂ exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O₃ treatment. It indicates that the protective effect of elevated CO₂ against O₃ stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O₃ significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO₂ suppressed the O₃-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO₂ increased total phenolics content in the leaves both under ambient O₃ and elevated O₃ exposure, which might contribute to the protection against O₃-induced oxidative stress as well.
Inhibition of oxidation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) by free radicals generated by decomposition of 2,2'-azobis(2-amidopropane) (ABAP) by antioxidants and biological material was studied. A correlation was found between the ability of various substances to delay the onset of ABTS oxidation and their rapid reduction of the ABTS+* cation radical, and between the ability to reduce the maximal rate of ABTS oxidation and slow reduction of ABTS+*. The length of the lag period of ABTS oxidation was found to be independent of ABTS concentration. Similar decrease of peroxynitrite-induced ABTS+* formation by antioxidants was observed when the antioxidants were added before and after peroxynitrite. All these findings indicate that the main effect of antioxidants in this system is reduction of ABTS+* and not prevention of its formation. Reduction of oxidation products rather than inhibition of their formation may be the predominant mode of action of antioxidants in various assays of antioxidant activity.
 In order to characterize the possible mechanism(s) of cytotoxicity of a neuroleptic agent 6,7-dinitrodihydroquinoxaline-2,3-dione (DNQX) we examined the redox properties of DNQX, and its mononitro- (NQX) and denitro- (QX) derivatives. The irreversible electrochemical reduction of the nitro groups of DNQX was characterized by the reduction peak potentials (Ep,7) of -0.43 V and -0.72 V vs. Ag/AgCl at pH 7.0, whereas NQX was reduced at Ep,7 = -0.67 V. The reactivities of DNQX and NQX towards the single-electron transferring enzymes NADPH:cytochrome P-450 reductase and NADPH:adrenodoxin reductase/adrenodoxin complex were similar to those of model nitrobenzenes with the single-electron reduction potential (E17) values of -0.29 V - -0.42 V. DNQX and NQX also acted as substrates for two-electron transferring mammalian NAD(P)H:quinone oxidoreductase (DT-diaphorase). The cytotoxicity of DNQX in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) was prevented by antioxidants and an inhibitor of NQO1, dicoumarol, and was enhanced by the prooxidant alkylating agent 1,3-bis(2-chloromethyl)-1-nitrosourea. A comparison with model nitrobenzene compounds shows that the cytotoxicity of DNQX and NQX reasonably agrees with the ease of their electrochemical reduction, and/or their reactivities towards the used enzymatic single-electron reducing systems. Thus, our data imply that the cytotoxicity of DNQX in FLK cells is exerted mainly through oxidative stress.
The objective of this study was to analyse the response of hepatocytes on various concentrations of 17ß-oestradiol (17ß-E) under iron-induced oxidative stress in vitro. Isolated by in situ collagenase perfusion hepatocytes were cultured in DMEM/HAMS-12 (v/v) medium without any additional agents (control), with Fe³⁺ alone, and with Fe³⁺ aild 0.2%, 0.02%, and 0.002% solution of 17ß-E (17ß-EI, 17ß-EII, and 17ß-EIII, respectively). After 24, 48, and 72 h, medium malonylodialdehyde (MDA), haptoglobin (Hpt) concentration and proliferative activity were determined. In comparison to control samples, and samples collected at 24 and 72 h, hepatocytes exposition to Fe³⁺, caused a significant increase in MDA (0.056 ±0.011 nM/mL) only after 48 h of incubation. Each of 17ß-E concentrations resulted in a decrease in MDA in samples obtained after 24 and 48 h. In comparison to the first 24 h, Fe³⁺ alone and together with 17ß-EI, 17ß-EII, and 17ß-EIII caused a significant augmentation of Hpt level in 48 h and 72 h of the experiment. Each of the 17ß-E concentrations added to the culture medium resulted in inhibition of hepatic proliferative activity, especially in the 72 h of cell culture.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 30 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.