Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  osteoderm
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The first unambiguous evidence of the presence of osteoderms in sauropod dinosaurs came from the discovery of Saltasaurus loricatus, a titanosaur from the Upper Cretaceous of Argentina. The dermal armor of Saltasaurus is composed of bony plates and small dermal ossicles. Here, we analyze the bone microstructure of these elements and provide information regarding its origin and development. The bony plates are composed almost entirely of reconstructed cancellous bone. Remains of primary bone consist of coarse bundles of mineralized collagenous fibers towards the external surface. Also, woven fibered bone tissue appears in the basal and lateral regions. Dermal ossicles lack secondary remodeling, and their matrix is formed by three orthogonal systems of collagenous fiber bundles. Growth lines are present in both bony plates and ossicles. Bone histology reveals that osteoderms mainly originated through direct mineralization (metaplasia) of the dermis, although other mechanisms are also involved (at least in the origin of dermal plates). The common features of development and integumental location of the osteoderms of Saltasaurus and other non−related vertebrates (e.g., lepidosaurs, crocodylomorphs) are linked to the intrinsic skeletogenic properties of the dermis.
During the Late Pleistocene, several possibly endemic cingulate species, known mostly from isolated osteoderms, carapace fragments, and caudal tubes, coexisted in the Brazilian Intertropical Region. Here, we describe the osteoderm microstructure of Pachyarmatherium brasiliense, as well as the glyptodonts Panochthus greslebini, Panochthus jaguaribensis and Glyptotherium sp., in order to provide additional species-diagnostic characters and shed light on their evolutionary relationships. Pachyarmatherium brasiliense lacks several derived features shared by glyptodonts and pampatheres, such as extensive bone remodeling, fibers arranged in large bundles, and relatively poorly developed layers of compact bone, thus supporting its exclusion from glyptodonts as suggested by a recent cladistic study. The osteoderm histology of P. greslebini resembles that of other species of Panochthus (e.g., Panochthus frenzelianus). By contrast, the presence of relatively thick layers of compact bone, the configuration and size of resorption areas, the absence of randomly oriented lateral fiber bundles, and the absence of an intermediary region between the compact and trabecular bone potentially support the exclusion of Panochthus jaguaribensis from the genus. Finally, osteoderms of the Brazilian specimens of Glyptodontinae share histological features with Glyptotherium floridanus, rather than Glyptodon, thus reinforcing their assignment to Glyptotherium. These results highlight the relevance of histological osteoderm characters in cingulate systematics, ands call for further and more comprehensive studies.
The extant venomous Gila monster and beaded lizards, species of Heloderma, live today in southwestern USA and south along the Pacific coastal region into Central America, but their fossil history is poorly understood. Here we report helodermatid osteoderms (dermal ossicles) from the late Miocene–early Pliocene Gray Fossil Site, eastern Tennessee USA. Twenty−three species of mammals are known from the fauna including abundant Tapirus polkensis, as well as fishes, anurans, salamanders, turtles, Alligator, birds, and snakes. Beaded lizards belong to the Monstersauria, a clade that includes Primaderma + Paraderma + Gobiderma + Helodermatidae (Estesia, Eurheloderma, Lowesaurus, and Heloderma). Osteoderms of lizards in this clade are unique within Squamata; they typically are circular to polygonal in outline, domed to flat−domed in cross−section, have a vermiculate surface texture, are not compound structures, and do not have imbricate surfaces as on many scincomorph and anguid lizards. We review and characterize the osteoderms of all members of Monstersauria. Osteoderms from the cranium, body, and limbs of Heloderma characteristically have a ring−extension (bony flange) at least partly surrounding the dome. Its presence appears to be a key character distinct to all species of Heloderma, consequently, we propose the presence of a ring−extension to be an apomorphy. Three osteoderms from the Gray Fossil Site range from 1.5 to 3.0 mm in diameter, have the circular shape of helodermatid osteoderms with a domed apical surface, and have the ring−extensions, permiting generic identification. Macrobotanical remains from the Gray Fossil Site indicate an oak−hickory subtropical forest dominated by Quercus (oak) and Carya (hickory) with some conifer species, an understorey including the climbing vines Sinomenium, Sargentodoxa, and Vitis. Plant and mammal remains indicate a strong Asian influence.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.