Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 26

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  numerical simulation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of this work is to assess the possibilities of numerical simulation of the industrial slurry sedimentation process using ANSYS CFX software. Our work focused on the analysis of the simulation models available in the CFX module of the ANSYS to run the simulation of sedimentation based on the results of laboratory tests.
Durability of engineering structures depends on the structure itself and environmental conditions. Aggressive substances can penetrate concrete matrix causing chemical degradation of material skeleton. At the same time the material is exposed to mechanical exertion which contributes to additional deterioration. This work attempts to analyze chemo-mechanical degradation of concrete from phenomenological point of view using numerical simulation. Diffusion of corrosive species was determined through local diffusion parameters and balance equations with sources and outfl ows prescribed by stoichiometry of chemical equations and reaction extent constant. Degradation of concrete was described with use of an additive scalar damage parameter adopting adequate evolution equations. The cellular automata method used is shown to be an effective calculation method. Contour lines of species concentration and partial damage parameter values were obtained using numerical simulation of the processes in 2D space. As expected, progressive degradation of concrete decreased bearing capacity of the RC section. Numerical simulation of residual cross-section strength was obtained by use of short-time destructive loading tests.
Recent numerical simulation of tsunami propagation proposed a new hypothesis about the origin of the 1771 tsunami that devastated the southwest Ryukyu district of Japan; a slip of the East Ishigaki Fault, a 44kmlong fault lying 50km off the east coast of Ishigaki Island, might be the cause of the 1771 tsunami. The present study is to test this hypothesis through visual observation by means of the precise seafloor image collected by the Hyper-Dolphin remotely operated vehicle. The hypothesis may be proved if definite evidence of a slip along the whole fault is obtained. Investigating the fault was accomplished by a reconnaissance survey at three representing fault segments: southern, central and northern. The result of the survey at the southern segment shows that the main fault scarp is covered by many large boulders. On the escarpment, 6m sections with a gradient of almost 90 degrees were observed. The result of the survey at the central segment shows similar characteristics as that at the southern segment. The northern segment was characterized by wide exposure of limestone outcrop with many cracks and fissures on the outcrop which represents nascent faulting. These facts suggest the northward propagation of the faulting along the main scarp. The result demonstrates that the amount of displacement at the fault segments is not uniform. This does not support the assumption taken into the numerical simulation; thus, it is unlikely that the slip at the fault generated the 1771 tsunami, even though simultaneous rupture at multiple fault segments are taken into account.
Closely spaced CTD transects across the Słupsk Furrow displayed a ‘downward- bending’ of salinity contours below the salinity interface on the southern flank due to a transverse circulation in the saline water overflow. Numerical simulation of a gravity current in an idealized channel with geometry, dimensions and initial density stratification all much the same as in the Słupsk Furrow was applied to verify whether the downward-bending could be transformed into an inverted density stratification. Some arguments in favour of the possibility of convective overturning due to the differential transverse advection beneath the gravity current, brought on by the numerical simulations, are discussed.
The main problem analysed in this paper is the impact of sediment accumulation and vegetation growth on transport of dissolved substances in a river. The system studied is the reach of the Warta River located upstream of the Jeziorsko Reservoir inlet. The three processes, namely sediment deposition, vegetation growth, and pollutant transport, are crucial for the functionality of reservoir. Classical HEC-RAS package is used for the reconstruction of steady flow conditions in the river reach. The transport of admixture is simulated by means of convection – dispersion model with additional elements describing storage of solutes in the floodplains. The results that the degree of maximum concentration decreases as the river bed geometry and vegetation cover are changed.
This paper deals with one of the aspects important from the point of view of water quality maintenance in storage reservoirs, namely the dynamics of water currents that accompany changes of the water surface elevation in such reservoirs. Numerical simulations were conducted to back observations that high discharges are in the long term beneficial to water quality in the reservoir. Calculations made using the AdH finite elements model confirmed that the water current pattern in shallow regions varies greatly with the total discharge value. The sample analysis shown in this article concerns a mid-size storage reservoir of Tresna located in southern Poland. It appears that for small discharges the currents that wet some areas of the previously dry reservoir bed are similar to reversed currents that occur when the area is dried. Thus some amounts of water may move from one stagnant area to another forth and back and then the water exchange is limited. It means that it is not enough to lower the water level within the reservoir steering rules and then raise it again to be assured that the water quality improves in the reservoir, especially in the lull parts. But for higher discharges the current pattern is different and the exchange of the reservoir water really does happen. In most cases in order to “flush” a reservoir that way one could just wait for high water to come, but if reservoirs form a cascade creating an artificial controlled freshet that propagates down the cascade may be a considerable means of altering water quality in lower reservoirs.
In August 2005 a very severe fl ood hit large parts of Switzerland. Strong erosion occurred in several steep, apparently stable reaches of mountain streams, what produced heavy sediment loads. Where these were deposited, they caused channel avulsion or channel obstruction with subsequent inundations. Numerical simulation proved to be a useful tool to analyse the processes and to plan mitigation measures. In particular, it could be shown that the fl ooding of the Schächen river had its origin in a lateral overspilling in the fi nal reach of this tributary and a subsequent blocking of the flow section. The load eroded in the upstream reach, which is normally stable because of the presence of big boulders, was suffi cient to feed this process. A detention basin with an open slit dam located upstream did only retain a limited amount of sediment temporarily. During fl ow recession, most of these deposits were eroded. This was in agreement with the original concept, but was not very useful in this fl ood situation. On the Lütschine river, a similar massive erosion in a steep reach caused widespread deposition in an area where such phenomena did probably not occur over the last 150 years. For such rare events, it is reasonable to plan a deposition area where limited agricultural land use is allowed. Sediment deposition occurs only in function of slope reduction and channel widening; no special structures are planned.
19
58%
In this study we modelled sea temperature (T ), salinity (S) and density field dynamics using a 3D numerical model applied to Rijeka Bay (Croatia) in order to explore their effect on effluent plume dynamics in the vicinity of four submarine sewage outfalls when the bora wind (NE direction) is blowing. The vertical density stratification in the area studied is strongly related to the bora wind, which contributes significantly to the lowering of the pycnocline depth through enhanced mixing in the vertical, giving rise to changes in the neutral buoyancy level. The features of near-field plume dynamics were calculated with the use of a separate near-field numerical model, using information on the vertical density distribution previously calculated using a 3D numerical model. The results of the numerical simulations and statistical analysis of the wind data indicate a very low probability of complete water column homogenization and consequent effluent plume rise to the sea surface under the influence of the bora wind during the peak tourist season (May–September).
Quantitative expressions are presented to describe the effects of temperature and food concentration on stage duration and growth rate of Temora longicornis for each of the model stage groups (N1–N6 – naupliar stages, C1, C2, C3, C4, C5 –the five copepodid stages). The calculations were made on the basis of experimental data from the literature for T. longicornis from the south-eastern and the southern North Sea. Relationships were obtained between the growth parameters and temperature for the 5–10◦C temperature range and food concentrations from 25 mgC m−3 to excess. Also computed was the total mean development time as a function of the above-mentioned parameters, temperature and food availability. The simulations computed here are similar to the experimental results. The growth rates for successive stages were obtained according to the correction of the ‘Moult Rate’ method, which allows the use of mean weights and stage durations. The calculations also suggest that three complete generations of T. longicornis from the Gdańsk Deep (the southern Baltic Sea) can develop during a single year.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.