Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  neuroinflammation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Experimental autoimmune encephalomyelitis (EAE) is an animal model that mimics many aspects of multiple sclerosis (MS). Chronic or relapsing inflammation of the central nervous system results in the destruction of myelin sheath and cytokines play an important role in the pathogenesis of both MS and EAE. Myelin, oligodendrocytes and neurons are lost due to an inflammatory attack by leukocytes infiltrating the central nervous system (CNS) and releasing cytotoxic cytokines, anti CNS antibodies and large amounts of the excitatory neurotransmitter glutamate. Pharmacological studies have suggested that glutamate receptors mediate white matter injury in a variety of CNS diseases, including multiple sclerosis (MS). Memantine and amantadine are ionotropic glutamate receptors (iGluRs) antagonists. Memantine, a clinically applied drug with N-methyl-D-aspartate (NMDA) receptor antagonistic effects, dose-dependently ameliorates neurological deficits in Lewis rats subjected to experimental autoimmune encephalomyelitis (EAE). The aim of the present study was to investigate the effects of memantine and amantadine on the expression of proinflammatory cytokines such interleukin 1beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) and various chemokines in the brain of EAE rats. Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Western Blot were used to analyze the cytokine profile. We noticed increased expression of array of cytokines in experimental group when compared to the control. Dramatic increase of IL-1β, IL-6, TNF-α, and chemokines concentration corresponding to the intensity of neurological symptoms and loss of weight was observed in EAE rats. Administration of iGluR antagonists at an advanced stage of unremitting EAE resulted in amelioration of the disease. Cytokine analysis revealed that memantine significantly decreased the expression of interleukins: IL-6 (65%), IL-1β (60%) and TNF-α (45%) whereas treatment with amantadine reduced only the expression of IL-6 (60%) and TNF-α (15%) when compared to EAE animals. These results show that antagonists of iGlu receptors modulate the course of the disease by reducing the expression of proinflammatory cytokines thereby confirming the involvement of glutamate receptors into pathological mechanisms operating during EAE. This study was supported by grant nr NN401620038 from Polish Ministry of Science and Higher Education
Mitochondria are key regulators of energy metabolism, redox balance, calcium homeostasis, and programmed cell death. In the past, we characterized mitochondria acting as targets of both caspase-dependent and caspase- independent death signalling triggered by increased oxidative stress and as executioners of programmed death signalling in neurons. For example, we identified mitochondrial damage in caspase‑independent neuronal death after cerebral ischemia in vivo, and in oxidative cell death, i.e., ferroptosis in vitro. Protective intervention against oxidative damage further confirmed the conclusion that mitochondria represent the “point of no return” in caspase‑independent paradigms of programmed cell death. Further, we found more recently that mitochondri al-targeted alpha-synuclein caused severe mitochondrial toxicity and caspase-dependent cell death in human dopaminergic neurons, a model system relevant to Parkinson’s disease. In different model systems of neuronal death, neuroprotective interference with mitochondrial pathways of programmed cell death was frequently attributed to metabolic switches, i.e., reduced mitochondrial respiration and increased glycolytic activity. Accordingly, targeting metabolic switches may serve as a general strategy for mitochondrial protection and, thereby, neuroprotection, but may also affect mechanisms of neuroinflammation involving activation of microglia. The understanding of the underlying mechanism of such metabolic protection may reveal novel therapeutic targets in neural diseases featuring mitochondrial impairments and neuroinflammation.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.