Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 181

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 10 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  mutant
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 10 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
5
88%
The usefulness of mutagenic treatment to enlarge isozymic variability of barley and the use of induced mutants for genetic analysis were evaluated. N-methyl-N-nitroso urea, sodium azide and gamma rays were employed as mutagenic agents. Electrophoretic assays of 3848 M₂ seedlings obtained by chemical mutagenic treatment of the spring barley cultivars Dema, Aramir, Bielik and 3100 M₂ seedlings obtained by physical mutagenic treatment of the cv. Dema revealed 70 isozymic mutants, which represent 30 separate mutants in 25 M₁ plants. Most of mutations (27) were induced by chemical mutagen at polymorphic esterase loci. The occurrence of induced mutants at monomorphic loci, Got2 and Lap2, made it possible to perform genetic analysis of those loci in barley including mapping respective genes within chromosomes.
The modified nucleotides, N2-(p-n-butylphenyl)dGTP and 2-(p-n-butylanilino) dATP and related compounds have been developed as inhibitor-probes of B family DNA polymerases. Synthetic approaches to these compounds are summarized. The nucleotides are potent, non-substrate inhibitors of DNA polymerase a. In contrast, they inhibit other members of the family with less potency but act as substrates for these enzymes. Modelling of the inhibitor: enzyme binding mechanism has been done based on the known structure of E. coli DNA polymerase I, and site-directed muta­genesis experiments to evaluate this mechanism are proposed.
The main purpose of this study was to examine the influence of pyrethroids, such as deltamethrin, cypermethrin and bifenthrin on the growth and the number of ρ-mutants in the cells of Saccharomyces cerevisiae yeast. SP-4 Mat alpha leu1 arg4 yeast strain was used as a standard strain for experiments. The cells were grown on a standard YPG liquid medium, under aerobic conditions until they reached the logarithmic or stationary phase of growth. Different concentrations of pyrethroid were added to the medium and the cells were incubated for 2 h. The survival rate of the cells was determined by diluting the cells and plating them on YPG Agar plates. The number of ρ-mutants was determined by examining the number of cells that hadn’t grown on YPG medium from among all surviving cells. As far as the investigated forms of pyrethroids are concerned, deltamethrin was the most toxic to yeast cells. It was also observed that low amounts of pyrethroid caused a greater destruction of cells at the logarithmic than at the stationary stage of growth. The influence of pyrethroid on the frequency of mutation of mitochondrial DNA of yeast cells was also studied. It was observed that after incubation with pyrethroid addition the frequency of ρ-mutation increased, especially at the logarithmic stage of growth.
Effect of EMS (ethyl methane sulphonate) on induced morphological mutants and chromosomal variation in cowpea was studied using five different doses of mutagen along with a control in randomized blocked design with three replications. The morphological mutants there are two types of viable and chlorophyll mutants. Viable mutant contains tall, dwarf, early maturity, late maturity, leaf mutants pod mutant and flower mutants. The frequency of chlorophyll mutant contains albino, xantha and viridis. This concentration can damage or modify important components of plant cells and have been reported to affect the morphology, anatomy, biochemistry and physiology of plants differentially depending on the concentration level. These effects include changes in the cellular structure and metabolism of the plants e.g., dilation of thylakoid membranes, alteration in photosynthesis, modulation of the antioxidative system and accumulation of phenolic compounds. The morphological and chromosomal variation was found to be mutagen sensitive in somatic cells of cowpea. It was found to increase with increasing the concentration of EMS in Cowpea plants. The chemical mutagen like ethyl methane sulphonate induces high frequency of chromosomal changes like anaphasic bridge; anaphasic laggard, anaphasic bridge and clumbing of chromosome were including control plants also observed.
Seeds of Lathyrus sativus cv. Derek and Krab were used as biological material for induced mutagenesis. Three mutant lines were obtained from seeds of grass pea cv. Derek and 15 lines from mutagenised seeds of cv. Krab. Twelve ethanol-soluble carbohydrates were identified in the seeds. We have selected grass pea mutant lines with high oligosaccharides content (lines D4, K56, K25, and K7) and lines with low raffinose family oligosaccharides (RFO) content (lines K12, K29 and K13). Mutations changing the levels of RFO have not affected the contents of galactosyl cyclitols.
The present study was under taken in order to analyze the chemical mutagenesis on Chilli germplasm. In this regard, K1 variety of chilli was subjected to different mutagenic concentration for inducing mutagenesis. The M3 plants exposed to EMS and DES to produce clear difference from the untreated control, thus indicating that mutagenic treatment produce polymorphic regions in the chilli. For extraction of genomic DNA was adopted an improved protocol of CTAB method with slight modification. A total of ten primers were used to screen the polymorphism among the treated populations line tall, tall with chlorophyll deficient, leaf, flower, GMS and DNA damages in maturity mutants were analyzed with control. Out of ten primers, four primers (PGF02, PGF03, PGF04 AND OP107) were successfully amplified in all the samples used for this study. The successful primers were amplified in to 93 products showing an average of 9.3 bands.
Deficiencies in superoxide dismutases (Cu,Zn-SOD or Mn-SOD) strongly shorten the life span of yeast cells. The effects of these deficiencies are additive. In contrast, deficiencies in catalases do not influence life span. Our results confirm that free radical processes may be involved in aging.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 10 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.