Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  morphological plasticity
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In plants, biomass allocation and rhizome morphological plasticity reflect different strategies of adaptation to the environment. The aims of this study were to explore the patterns of allocation to different components of the belowground system, and to evaluate the effects of environmental factors on the plasticity of biomass allocation and rhizome morphology. We conducted a survey of the clonal plant, Scirpus planiculmis, in the Momoge wetland in northeastern China. Samples were collected at three sites. Site I is the washland of a seasonal lake. Site II is a permanent lake. Site III belongs to the bank of a recessive river. The average number of sampled plants was 686.25±91.61 per site. We determined the biomass of different plant parts (aboveground part, root, tuber, rhizome) and measured parameters of rhizome morphology (specific rhizome length, average rhizome diameter). Edaphic factors (soil moisture content, organic matter, available phosphorus, available potassium, pH, electrical conductivity) were included as environmental variables. Differences in biomass allocation patterns were analyzed and multiple regression analyses were used to construct a model. The results showed that the structure of the belowground system varied significantly among the three sites. (1) The tubers accounted for the largest share of biomass in plants at site I; (2) plants at site III showed significantly longer rhizomes than those of plants at site II, while the plants at site II showed larger rhizome diameter; (3) pH was the crucial factor affecting biomass allocation and rhizome morphology, and was negatively correlated with root biomass of S. planiculmis. Based on these results, we concluded that: (1) greater resource allocation to the storage organ (tuber) reflects a conservative strategy to avoid damage and to maintain the potential for recolonization in a frequently disturbed habitat; (2) the morphological plasticity of the rhizome increases the ability of the clone to acquire resources. Shorter rhizomes enable rapid colonization of the habitat and efficient resource use under strong competition pressure, while longer rhizomes are useful to explore new habitats when local resources are insufficient. Our results suggest that ecological niche of S. planiculmis should be reconsidered. It may be more appropriate to classify S. planiculmis as a facultative salt-alkali plant, although a degree of tolerance to salinity and alkalinity is important for the initial formation of a population.
It is known that the role of accessible light as a growth-determining factor in beech natural regeneration rises in importance with growth of individuals. However, the accompanied changes in leaf traits underlying this shift in light demands are not well known. The aim of this study was to investigate influence of ontogenetic stage (0.5 m high ‘seedlings‘, 2.1 m ‘saplings‘), shoot type (terminal, lateral long and lateral short) and diffuse and direct light on morphological traits of leaves at spring-shoot-level in naturally regenerated beech individuals – shoot mean leaf area (mLA), shoot mean leaf weight (mLW), leaf mass per area (LMA), leaf area per shoot unit length (LAL), leaf mass per shoot unit length (LWL), number of leaves per shoot unit length (NLL), and ratio of mean-leaf width to its length (LSh). Ontogenetic drift affected the values of these traits; its influence depended on shoot type and component of light. The light explained more trait variability in saplings compared to seedlings (on average 45% vs 32%). The most evident shift was in the case of direct light – while direct light explained on average 18% of traits variability in seedlings, it was about 42% in saplings. The saplings compared with seedlings showed higher values of mLA, mLW, LMA, LAL on short shoots, LWL on lateral long and short shoots, LSh on terminal and lateral long shoots, and lower NLL values on terminal and long lateral shoots. Plastic response to light was higher in saplings than in seedlings (except mLA). Generally, the observed traits showed more plastic response to diffuse than to direct light in seedlings; the response of saplings was similar in both light components. The most plastic trait was LMA, the least LSh. Individuals of saplings displayed higher plasticity in traits close correlating with annual length growth of main axis, which suggests that saplings would benefit from increased light availability more than seedlings.
Phenotypic plasticity acts to increase the performance of plants under stress. Leaf morphological plasticity and its causes in different environments are incompletely understood. We measured the leaf morphological parameters of Quercus acutissima Carr. seedlings, including leaf size, leaf shape and venation pattern, assessing the effects of different habitat conditions on leaf morphological plasticity. A field study in forest edge and understory was combined with experiments simulating different light and water conditions. Leaf morphology variations occurred over most of the parameters, and the causes were consistent between the field study and lab experiment. Leaf size decreased with low supply of light and water. Leaf length and width were only affected by leaf area. The leaf petiole did not lengthen under shade stress, suggesting a trade-off relationship between functional tissues and support structures. Leaf shape became narrower in drought and broader in the shade, as reflected in changes in three leaf fractions. Higher vein density played a part in enhancement of mechanical support and water supply. Leaves with more teeth show more active photosynthesis, but are disadvantageous in xeric environments because of higher transpiration. Light was the main factor inducing leaf morphological plasticity. The variations caused by drought were due mainly to the allometry. Our results showed that the leaves of Q. acutissima seedlings respond to different habitats with phenotypic plasticity of morphology, suggesting that this is an important mechanism for seedlings to adapt to broader ecological amplitudes.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.