Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  metabolic pathway
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Cancer stem cells are a small subset of cancer cells constituting a reservoir of self-sustaining cells with the exclusive ability to self-renew and maintain the tumor. These cells are identified by specific stem cell markers: antigens, molecules and signaling pathways. Transcription factors and molecules associated with oncogenesis, such as NF-κB, Bmi-1, Notch, WNT beta-catenin, Sonic hedgehog and their biochemical pathways, active only in a small minority of cancer cells might play key roles in determining the biology and the overall long-term behavior of a tumor. The molecules and pathways specific for cancer stem cells, which contribute to their drug resistance, are potential targets for new therapeutic strategies.
Pyrrolizidine alkaloids (PAs) are the class of secondary metabolites that evolved as a powerful tool in the plant defensive interactions against herbivores. The occurrence of PAs in the plant world is scattered in several unrelated botanic families with special abundance in Asteraceae, Boraginaceae and Fabaceae. Homospermidine synthase (HSS) was recognized as a key enzyme that catalyzes homospermidine formation from polyamines. The studies of HSS kinetic and gene sequence revealed that it is of polyphyletic origin and raised as a result of deoxyhypusine synthase (DHS) gene duplication. The ability of PAs production occurred independently at least four times in course of plant evolution. The PAs biosynthesis is tightly correlated with growth phase and biomass production. It is supposed that PAs biosynthesis is individually regulated in different lineages of plants. The PAs with a 1,2 unsaturated necine skeleton show toxic activity (hepatoxicity, carcinogenicity, genotoxicity, teratogenocity and cytotoxicity). It is though that pyrrolic esters formation during the detoxication process in the liver is the main mechanism of PAs toxicity. The pyrrolic esters are highly reactive and tend to bind rapidly with nucleophilic macromolecules including DNA and DNA-protein inducing hepatotoxicity or tumorigenecity. The problem of PAs toxicity cause the restrictions in the production and sale of herbal products. This review encompasses the present status of the pyrrolizidine alkaloids in the plants studies and summarize the topics of chemistry, biosynthesis, evolution including the involved genes, the factors affecting on biosynthesis, accumulation and toxicity of PAs.
The 6-oxopurine xanthine (Xan, neutral form 2,6-diketopurine) differs from the cor­responding 6-oxopurines guanine (Gua) and hypoxanthine (Hyp) in that, at physio­logical pH, it consists of a = 1:1 equilibrium mixture of the neutral and monoanionic forms, the latter due to ionization of N(3)-H, in striking contrast to dissociation of the N(1)-H in both Gua and Hyp at higher pH. In xanthosine (Xao) and its nucleotides the xanthine ring is predominantly, or exclusively, a similar monoanion at physiological pH. The foregoing has, somewhat surprisingly, been widely overlooked in studies on the properties of these compounds in various enzyme systems and metabolic path­ways, including, amongst others, xanthine oxidase, purine phosphoribosyltrans- ferases, IMP dehydrogenases, purine nucleoside phosphorylases, nucleoside hydro- lases, the enzymes involved in the biosynthesis of caffeine, the development of xanthine nucleotide-directed G proteins, the pharmacological properties of alkyl- xanthines. We here review the acid/base properties of xanthine, its nucleosides and nucleotides, their N-alkyl derivatives and other analogues, and their relevance to studies on the foregoing. Included also is a survey of the pH-dependent helical forms of polyxanthylic acid, poly(X), its ability to form helical complexes with a broad range of other synthetic homopolynucleotides, the base pairing properties of xanthine in synthetic oligonucleotides, and in damaged DNA, as well as enzymes involved in circumventing the existence of xanthine in natural DNA.
Prostaglandins (PGs) have been implicated as precursors of biological processes, many of which are functional in parasite-host interactions. The aim of the study was the isolation and examination of PGs in extracts from adults, larvae and excretory/secretory products (E/S) of Trichostrongylus colubriformis and Haemonchus contortus. Thin-layer chromatographic (TLC) and high performance liquid chromatographic (HPLC) methods established the presence of PGs in the extracts that were identified as PGA₂, PGB₂, PGD₂, POE₂, PGF₁α, PGF₂α, PGI₂ and non-identified forms of PGs, precursors or metabolites of PGs. The qualification/quantitative profiles for the PGs were very similar for adult, L3 and E/S products of T. colubriformis and H. contortus.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.