Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  liquid phase
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Background. The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. MateriaL and methods. Winter triticale BOGO and “Ethanol Red” Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizing the triticale, commercial α-amylase SPEZYME ETHYL and glucoamyl- ase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Results. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol) as well as protein and potassium concentrations. Conclusions. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage) constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.
This paper briefly presents the main results of theoretical and empirical studies, found in available literature, that can be helpful for understanding physical and chemical stability of the aroma compounds in liquid food systems. As the main parameters, which affect retention and release rate of odorants, are reported thermodynamic and kinetic factors in relation to equilibrium partition coefficient between gas and liquid phases and mass transfer coefficient in gas and liquid phases. Moreover, the review introduces interactions between volatiles and basic food components i.e. lipids, proteins and carbohydrates as well as the influence of environmental factors such as: ionic strength, pH and temperature, on the volatility and release of odorants.
A protocol was developed for high frequency and low cost of in vitro shoot proliferation and ex vitro rooting of Eustoma grandiflorum (Gentianaceae) on solid medium. Shoot tips as explants were cultured on Murashige and Skoog (MS) medium enriched with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) (0.00, 0.01, 0.10 and 1.00 mg l–1) and 6-benzylaminopurine (BAP) (0.00, 0.50, 2.00 and 5.00 mg l–1). Three culture media systems (solid, liquid and double-phase) were applied. None of the explants cultured on liquid and double-phase media resulted in live plant production. Maximum axillary shoot number (54.45) was recorded in the plantlets treated with 0.10 mg l–1 2,4-D in combination with 5.00 mg l–1 BAP. Treatment of 0.01 mg l–1 2,4-D along with 0.50 mg l–1 BAP produced maximum node number and internode length. Some shoots produced on medium containing plant growth regulators (PGRs) were rooted in soil. The largest number (5.50/plantlet) and longest length of root (7.75 cm/plantlet) were obtained in ex vitro condition on the base of shoots produced in culture medium enriched with 0.10 mg l–1 2,4-D along with 0.50 mg l–1 BAP. The combination of 1.00 mg l–1 2,4-D and 0.50 mg l–1 BAP was found to be the most suitable PGRs for obtaining the highest callus weight. The most fresh weight was calculated from plantlets grown on the medium containing 0.10 mg l–1 2,4-D along with 5.00 mg l–1 BAP. Maximum dry weight was obtained in free-PGRs medium. About 90% of the rooted plantlets were established successfully in cultivation beds. Acclimatized plants were morphologically similar to the mother plants.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.