Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 147

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  isolate
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Background. Some researchers have indicated that Lactobacillus delbrueckii subsp. bulgaricus may provide additional health benefits, reduce serum cholesterol level, for example. The aim of this study was to determine cholesterol uptake by Lb. delbrueckii subsp. bulgaricus commercial yoghurt starter isolates in artificial GIT fluids. Material and methods. Lb. delbrueckii subsp. bulgaricus isolates were cultured in MRS broth and in artificial GIT fluids contained cholesterol at initial concentration ca. 560 μg/mL, as well as in MRS broth with cholesterol addition. Results. All Lb. delbrueckii subsp. bulgaricus showed ability to uptake of cholesterol from MRS broth and artificial GIT fluids. The isolates incubated in artificial gastric fluid removed the minimal amounts of cholesterol in comparison to the same isolates incubated in MRS broth. Only two isolates removed significantly more cholesterol from MRS broth that from duodenal fluid. The amount of removed cholesterol from artificial duodenal fluid ranged from 20 μg/mL to 78 μg/mL. All Lb. delbrueckii subsp. bulgaricus isolates survived worse in artificial GIT fluids than in MRS broth. The viability of Lb. delbrueckii subsp. bulgaricus in GIT fluids depended on isolate. Conclusions. These results proved that Lb. delbrueckii subsp. bulgaricus shows ability to uptake cholesterol from MRS broth and artificial GIT fluids, and the degree of cholesterol uptake depends on isolate and incubation environment. The ability of Lb. delbrueckii subsp. bulgaricus to survive in GIT varies according to the isolates and incubation environment
From 2008 to 2010 the levels of sugar beet seedlings infection caused by Rhizoctonia solani were compared in laboratory tests. Seven sugar beet lines were tested: H56, H66, S2, S3, S4, S5 and S6 as well as three control cultivars: Carlos, Esperanza and Janosik. Sugar beet lines with tolerance to rhizoctoniosis and cultivars without tolerance were infected artificially by R. solani isolates: R1, R28a and R28b. These isolates belong to the second anastomosis group (AG), which is usually highly pathogenic to beet roots. The aim of the experiment was to test whether the tolerance of sugar beet genotypes to R. solani AG 2 prevents both root rot, and damping-off of seedlings, induced by the pathogen. Sugar beet lines tolerant to brown root rot in laboratory tests were significantly less sensitive to infection of the seedlings by R. solani AG 2 isolates in comparison to control cultivars. Rhizoctonia solani AG 2 isolates demonstrated considerable differences in pathogenicity against seedlings of sugar beet lines and cultivars. The strongest infection of sugar beet seedlings occurred with the isolate R28b. The greatest tolerance to infection by AG 2 isolates was found for the S5 and S3 breeding lines.
Uropathogenic Escherichia coli are the major causative agent of urinary tract infection – they may simultaneously express a number of virulence factors to cause disease. The aim of this study was to investigate the relation between virulence factors content of fifteen UPEC isolates and their pathogenic potential. The isolates belonged to the five serotypes O78:K80, O114:K90, O142:K86, O164 and O157. Nine of the virulence factors have been explored, ibeA, pap, sfa/foc, cnf1, hly, fyuA, pil, ompT and traT. Virulence factors profiling of the isolates revealed a different content ranging from 22% to 100% of the virulence genes explored. The pathogenic capacity of all fifteen isolates when tested on Vero cells showed that the cytotoxicity for all tested strains on Vero cells was approximately equal and enhanced after growth in syncase broth, leading mainly to cell lysis. The toxic effects reduced slightly after heat treatment of the toxin, and greatly after formalin detoxification, but not all the deleterious effect was abolished. Endotoxin also has cytotoxic effects on Vero cells, but longer time is needed for cytolysis which is greatly diminished with formalin treatment. In conclusion, our study revealed that pathogenic strains of UPEC can exert their pathogenic effect on live cells or system with limited virulence factors gene content.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD). This nematode is considered to be an indigenous to North America and was introduced to Japan in the late 19th century. Subsequently, it has spread throughout Japan and in many other countries, China, Taiwan, and South Korea. In 1999, B. xylophilus was discovered in Portugal, and in 2008 in Spain. So far the studies have revealed that the pathogenicity of B. xylophilus varies between different isolates. The conducted study compared the pathogenicity of five isolates of B. xylophilus, originating from different parts of Japan, to 3-year-old Pinus sylvestris, and their ability to reproduce in the seedlings. The results revealed diverse virulence of B. xylophilus resulting in plant mortality. Three isolates S10, Ka4, and T4 caused 100% mortality of plants within three months while at the same time, the other two isolates, C14-5 and OKD-1 did not cause any disease symptoms on plants. After seven months, some dieback occurred on two seedlings, but similar symptoms were also found on the control plant. Moreover, a significant positive correlation was found between nematode virulence and the number of nematodes reproducing on pine seedlings.
In this study, the biocontrol abilities of water-soluble and volatile metabolites of three different isolates of Trichoderma (T. asperellum,T. harzianum and Trichoderma spp.) against soil borne plant pathogen Rhizoctonia solani were investigated both in vitro and in vivo. The results showed for the first time that mycelial growth inhibition of the pathogen was 74.4–67.8% with water-soluble metabolites as compared to 15.3–10.6% with volatile metabolites in vitro. In vivo antagonistic activity of Trichoderma isolates against R. solani was evaluated on bean plants under laboratory and greenhouse conditions. We observed that T. asperellum was more effective and consistent, lowering disease incidence up to 19.3% in laboratory and 30.5% in green house conditions. These results showed that three isolates of Trichoderma could be used as effective biocontrol agents against R. solani.
The present study aimed to evaluate antimicrobial activity of tigecycline against 84 multidrug resistant (MDR) Acinetobacter spp. strains by disc diffusion and E-test methods. The results of disc diffusion test were compared according to two different interpretation ways. In addition, E-test results and the disc diffusion results that interpreted by both the methods were checked for compatibility. According to the disc diffusion test, 3 strains (3.57%) were found resistant to tigecycline when considering breakpoints suggested by Food and Drug Administration (FDA). On the other hand, none of the strains was found resistant to the evaluation criteria recommended by Jones et al. (2007). Considering E-test results of tigecycline, MIC₅₀ and MIC₉₀ values of tigecycline for Acinetobacter spp. were 0.75 and 1 mg/l, respectively. Based on FDA defined breakpoints for Enterobacteriaceae, any resistant isolate was detected. In conclusion, although there are some differences in the results, tigecycline was found quite effective on Acinetobacter spp. isolates with reference to the both disc diffusion and the E-test methods.
Culturable microorganisms were successfully isolated from soil and sediment samples collected in 2011 on the northern coast of Hornsund, West Spitsbergen. A total of 63 single colony isolates from three sampling sites obtained were subjected to temperature dependence study to assess whether they are obligate psychrophilic or psychrotrophic strains. From initial temperature screening, only 53 psychrotrophic isolates were selected that are capable of growing between 4–28°C. The rest that were capable of tolerating higher temperatures up to 37°C were not included in this study. These isolates were chosen for lipase enzyme screening confirmation with the standard plate assay of olive oil and fluorescent dye Rhodamine B. Six lipase positive isolates were also subjected for subsequent lipase enzyme plate screening on tributyrin, triolein, olive oil and palm oil agar. Lipase production by these six isolates was further assayed by using colorimetric method with palm oil and olive oil as the substrate. These isolates with promising lipase activity ranging from 20 U/ml up to 160 U/ml on palm oil and olive oil substrate were successfully identified. Molecular identification by using 16S rRNA revealed that five out of six isolates were Gram-negative Proteobacteria and the other one was a Gram-positive Actinobacteria.
Aspergillus parasiticus is one of the most common fungi which contaminates peanuts by destroying peanut shells before they are harvested and the fungus produces aflatoxins. The aim of this study was to evaluate the antifungal activities of seventeen essential oils on the growth of the aflatoxigenic form of A. parasiticus in contaminated peanuts from commercial outlets in Georgia. The agar dilution method was used to test the antifungal activity of essential oils against this form of A. parasiticus at various concentrations: 500; 1,000; 1,500; 2,000; 2,500 ppm. Among the seventeen essential oils tested, the antifungal effect of cinnamon, lemongrass, clove and thyme resulted in complete inhibition of mycelial growth. Cinnamon oil inhibited mycelial growth at ≥ 1,000 ppm, lemongrass and clove oils at ≥ 1,500 ppm and thyme at 2,500 ppm. However, cedar wood, citronella, cumin and peppermint oils showed partial inhibition of mycelial growth. Eucalyptus oil, on the other hand, had less antifungal properties against growth of A. parasiticus, irrespective of its concentration. Our results indicate that the aflatoxigenic form of A. parasiticus is sensitive to selected essential oils, especially cinnamon. These findings clearly indicate that essential oils may find a practical application in controlling the growth of A. parasiticus in stored peanuts.
Fruit rot of tomato is a serious disease caused by Fusarium species. Sampling was conducted throughout Selangor, Malaysia and fungal species identification was conducted based on morphological and gene encoding translation elongation factor 1-α (tef1-α) sequence analysis. Five species of Fusarium were discovered namely F. oxysporum (including F. oxysporum f. sp. lycopersici), F. solani, F. equiseti, F. proliferatum and F. verticillioides. Our results provide additional information regarding the diversity of Fusarium species associated with fruit rot disease of tomato.
Genetic recombination plays an important role in the evolution of virus genomes. In this study we analyzed publicly; available genomic sequences of Pepino mosaic virus (PepMV) for recombination events using several bioinformatics tools. The genome-wide analyses not only confirm the presence of previously found recombination events in PepMV but also provide the first evidence for double recombinant origin of the US2 isolate.
Background. Coagulase negative staphylococci are at the forefront of etiologic agents of periprosthetic joint infections (PJIs). The purpose of the study was to characterise causative isolates (n=19) of Staphylococcus epidermidis (SE) – with emphasis on their phenotypic and genotypic heterogeneity. Material and methods. The isolates were cultured from multiple samples obtained perioperatively during revision surgery from 14 patients with clinically and/or microbiologically proven PJI. Phenotypic heterogeneity included variations of colony morphologies, drug resistance patterns and/or the capability of the biofilm formation and was verified by the DNA fingerprinting assay. Results. Phenotypic discrepancies were observed between isolates cultured from 5 patients (35.7%). The genotyping assay identified 3 pairs of isolates as unrelated; single pairs were genetically related and indistinguishable. The biofilm production was detected in 17 isolates, among which 5 (29.4%) were proficient biofilm formers harbouring the icaADBC genes. Additionally, one ica-positive isolate produced a moderate, protease-sensitive biofilm. The remaining isolates were moderate biofilm producers among which four developed protease-sensitive biofilms. Conclusions. The majority of PJIs are monoclonal; nevertheless, phenotypic diversity of SE is a frequent phenomenon which can complicate the diagnostic proceeding. Adherence ability is an important pathogenic trait of SE although the chemical composition of the resultant biofilm, its intensity and regulation of development can vary.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.