Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 78

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  ionizing radiation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
 Reactions of reactive oxygen species and more specifically - of hydroxyl radical (•OH) - with nucleosides may lead to the generation of radicals in the base and 2-deoxyribose moieties. In the present study emphasis was put on the possible reaction modes of 2'-deoxyadenosine (dA) radicals, leading to the formation of related 5',8-cyclonucleosides. It appears that the prerequisite for the formation of 5',8-cyclo-2'-deoxyadenosine (cdA) is the adoption of O4'-exo conformation by 2-deoxyribose; however, this is the least energetically favored conformer among the different puckered forms adopted by the furanose ring. The O4'-exo conformation was found to be present in each of the discussed mechanisms.
The L5178Y (LY) murine lym phoma sublines LY-R and LY-S are dif fer en tially sen si tive to ion iz ing ra di a tion. The high ra di a tion sen si tiv ity of LY-S cells is re lated to im­paired rejoining of DNA double strand breaks. We found previously that the g-ray-induced base dam age is higher in the more radiosensitive LY-S subline. Here, we ex am ine the role of the re pair of ion iz ing ra di a tion in duced base dam age in re la tion to the radiosensitivity dif fer ence of these sublines. We used the GS/MS tech nique to es ti mate the re pair rates of six types of base dam­age in g-irradiated LY cells. All mod i fied DNA bases iden ti fied in the course ofthis study were typ i cal for ir ra di ated chromatin. The to tal amount of ini tial base dam age was higher in the ra di a tion sen si tive LY-S subline than in the ra di a tion re sis tant LY-R subline. The re pair rates of 5-OHMeUra, 5-OHCyt, 8-OHAde were sim i lar in both cell lines, the re pair rates of FapyAde and 8-OHGua were higher in the radiosensitive LY-S cell line, whereas the re pair of 5-OHUra was faster in its radio resistant coun ter part, the LY-R. Al to gether, the re pair rates of the g-ray-induced DNA base dam age in LY sublines are re lated nei ther to the ini tial amounts of the dam aged bases nor to the dif fer en tial le thal or mutagenic ef fects of ion iz ing ra di a tion in these sublines.
In everyday life human organism is subjected to ionizing radiation coming from natural and artificial sources, including medical diagnostics and therapy. However, contrary to popular beliefs the highest average exposition is due to natural sources. The artificial non-medical sources of ionizing radiation include radioactive materials used in industry and radioactive fallout. Natural exposition comes from internal sources (radioactive elements in the body) and external ones, such as primary and secondary cosmic radiation as well as terrestrial radiation. Therefore it was found that exposure to ionizing radiation coming from sources other than medical amounts to 85% of the total average exposure.
Functions of nuclear polymeric proteins such as lamin A/C and actin in transport of plasmid DNA were studied. The results show that the lamina plays an important role in plasmid DNA’s entry into the cell nucleus from the cytoplasm. Selective disruption of lamin A/C led to a halt in plasmid DNA transport through the nuclear envelope. Inside the nucleus, plasmid DNA was frequently localized at sites with impaired genome integrity, such as DNA double-strand breaks (DSBs), occurring spontaneously or induced by ionizing radiation. Polymeric actin obviously participates in nuclear transport of plasmid DNA, since inhibition of actin polymerization by latrunculin B disturbed plasmid transport inside the cell nucleus. In addition, precluding of actin polymerization inhibited plasmid co-localization with newly induced DSBs. These findings indicate the crucial role of polymeric actin in intranuclear plasmid transport
 Microarray methods have become a basic tool in studies of global gene expression and changes in transcript levels. Affymetrix microarrays from the HGU133 series contain multiple probe-sets complementary to the same gene (4742 genes are represented by more than one probe-set in a microarray HGU133A). Individual probe-sets annotated to the same gene often show different hybridization signals and even opposite trends, which may result from some of them matching transcripts of more than one gene and from the existence of different splice-variant transcripts. Existing methods that redefine probe-sets and develop custom probe-set definitions use mathematical tools such as Matlab or the R statistical environment with the Bioconductor package (Gentleman et al., 2004, Genome Biol. 5: 280) and thus are directed to researchers with a good knowledge of bioinformatics. We propose here a new approach based on the principle that a probe-set which hybridizes to more than one transcript can be recognized because it produces a signal significantly different from others assigned to the particular gene, allowing it to be detected as an outlier in the group and eliminated from subsequent analyses. A simple freeware application has been developed (available at http://www.bioinformatics.aei.polsl.pl) that detects and removes outlying probe-sets and calculates average signal values for individual genes using the latest annotation database provided by Affymetrix. We illustrate this procedure using microarray data from our experiments aiming to study changes of transcription profile induced by ionizing radiation in human cells.
ATM kinase (ATM) is essential for activation of cell cycle check points and DNA repair in response to ionizing radiation (IR). In this work we studied the molecular mechanisms regulating DNA repair and cell death in human T-lymphocyte leukemic cells, MOLT-4. Apoptosis was evaluated by flow-cytometric detection of annexin V. Early apoptotic cells were determined as sub-G1 cells and late apoptotic cells were determined as APO2.7-positive ones. Proteins involved in ATM signalling pathway were analysed by Western-blotting. We observed a rapid (0.5 h) phosphorylation of ATM declining after 6 h after irradiation by all the doses studied (1.5, 3.0, and 7.5 Gy). Checkpoint kinase-2 (Chk-2) was also phosphorylated after 0.5 h but its phosphorylated form persisted 4, 2, and 1 h after the doses of 1.5, 3.0, and 7.5 Gy, respectively. The amount of p53 protein and its form phosphorylated on Ser-392 increased 1 h after irradiation (1-10 Gy). The lethal dose of 7.5 Gy caused an immediate induction and phosphorylation of p53 after 0.5 h post-irradiation. At the time of phosphorylation of p53, we found simultaneous phosphorylation of the oncoprotein Mdm2 on Ser-166. Neither ATM nor its downstream targets showed a dose-dependent response after 1 h when irradiated by the doses of 1-10 Gy. MOLT-4 cells were very sensitive to the effect of IR. Even low doses, such as 1.5 Gy, induced apoptosis 16 h after irradiation (evaluated according to the cleavage of nuclear lamin B to a 48-kDa fragment). IR-induced molecular signalling after exposure to all the tested doses was triggered by rapid phosphorylation of ATM and Chk-2. Subsequent induction of p53 protein and its phosphorylation was accompanied by concomitant phosphorylation of its negative regulator, oncoprotein Mdm2, and followed by induction of apoptosis.
Background: In this work we studied the relationship between the enhanced expression of DR5 receptor and the effect of combination of TRAIL and ionizing radiation on cell cycle arrest and apoptosis induction in human leukemia cell line HL-60. Material and methods: DR5, APO2.7 and cell cycle were analyzed by flow cytometry. Proteins Bid and Mcl-1 were analyzed by Western-blotting. For clonogenic survival, colony assay on methylcellulose was used. Results: Ionizing radiation caused significantly enhanced positivity of DR5 receptors 24 h after irradiation with high doses (6 and 8 Gy). An increase of DR5 receptor positivity after a dose of 2 Gy was not statistically significant and application of TRAIL 48 h after irradiation did not increase the apoptosis induction. However, a decrease of radiation-induced G2 phase arrest and an increase of apoptosis were observed when TRAIL was applied 16 h before irradiation with the dose of 2 Gy. Incubation with 6 µg/l TRAIL for 16 h reduced D0 value from 2.9 Gy to 1.5 Gy. The induction of apoptosis by TRAIL was accompanied by Bid cleavage and a decrease of antiapoptotic Mcl-1 16 h after incubation with TRAIL. Conclusion: TRAIL in concentration of 6 µg/l applied 16 h before irradiation by the dose of 1.5 Gy caused the death of 63% of clonogenic tumor cells, similarly as the dose of 2.9 Gy alone, which is in good correlation with the enhanced apoptosis induction.
Modifying effect of Solcoseryl upon the late postirradiation damage of the lungs expressed as the number of apoptotic cells per 1mm² of the pulmonary tissue was investigated in rats. The number of labelled apoptotic cells in situ was determined by TUNEL method under light microscope connected to computer imaging (Lucia software). The results of the experiment demonstrated statistically significant reduction in the number of apoptotic cells in the pulmonary tissue in the group of rats irradiated with simultaneous administration of Solcoseryl in comparison to the group of animals irradiated without Solcoseryl treatment. The results indicate that Solcoseryl exhibits radioprotective activity upon the respiratory epithelium due to the reduction of the apoptotic cell number.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.