Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  insulinopodobny czynnik wzrostu
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The immune-like growth factors (IGF-I, IGF-II and IGFBP) play a significant role in human and animal reproduction. It was found that the receptors for these growth factors are present in the uterine endometrium and in the epithelium of the oviduct, and that the gene expression for these receptors depends on the phases of the estrus cycle. The high concentration of IGF-I and IGF-II receptors in the epithelium of the oviduct and in the uterine glands may suggest that the role of these receptors is to regulate the excretory function of the mucous membrane in order to establish an appropriate environment for embryo development. Moreover, IGF-I and IGF-II act mitogenically intensifying the growth of an early embryo. The impact and growing concentration of these factors in embryogenesis depend on the estrogen action. The action of the immune-like factors is multifunctional and not limited only to stimulation of embryo development. The IGF factors also play an important role in the control of apoptosis.
Implantation is crucial for normal pregnancy and embryo development. Synchronized interaction between the embryo and the endometrium is necessary for the embryo to reach the endometrial site of implantation and for the blastocyst to achieve its normal developmental capacity. The process of implantation is divided into three stages: apposition, adhesion, and invasion. The systems that regulate the course of these mechanisms are based on the secretion of hormones and on the synthesis of selected growth factors. Disruptions in these factor-derived signaling pathways prevent implantation and/or result in abortion, thus reducing fertility. This review presents the molecular basis of embryo implantation. This knowledge may be used in the future to evaluate the ability of potential recipients to receive embryos and to be used for embryo transfer.
The process of skeletal muscle development is regulated by many biologically active factors, which are responsible for stimulating the proliferation and differentiation of muscle cells. Biologically active factors function in paracrine, autocrine and endocrine manner to control myogenesis. The main regulators include hormones, growth and differentiation factors, as well as cytokines. The process of skeletal muscle regeneration associated with the activation of satellite cells for their proliferation and differentiation requires the involvement of many growth factors secreted by the surrounding tissue, including inflammatory cells, blood vessels and damaged muscle fiber, as well as extracellular matrix. A number of trophic factors regulating the activity of satellite cells during muscle regeneration have been identified, e.g. fibroblast growth factors, transforming growth factors-β, insulin-like growth factors, hepatocyte growth factor, tumor necrosis factor-α, interleukin-6. These factors are responsible for maintaining a balance between the processes of proliferation and differentiation of satellite cells in order to restore the proper architecture and functioning of muscle tissue.
The endometrium of the uterus is a highly dynamic structure in terms of its changes during the various stages of the sexual cycle. These changes are the result of cyclical fluctuations in the concentrations of steroid hormones and local factors of an auto – and paracrine – nature. This condition indicates that the causes of degenerative processes of the uterus must be sought not only in disorders of the hormonal profile and bacterial infections but also disorders at the molecular level. Factors that may play a key role in the formation and development of various pathologies of the female reproductive system include growth factors and their receptors (growth factors – GFs). Discussing these growth factors in the work may provide useful molecular markers that identify pathological conditions of the endometrium. Subject to expression in the endometrium, they are involved in the regulation of cell proliferation, migration and secretion of the glandular epithelium, they also regulate physiological and pathological angiogenesis, revealing strong pro-inflammatory effects. In this research, the authors present an overview of current scientific reports indicating that changes in the expression of studied factors, and thus disturbances in their effects, may constitute one of the causes of pathogenesis within the uterus in many animal species.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.