Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 25

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  immunogenicity
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Three mutants of Yersinia enterocolitica O:3, namely: YeO3-R1, YeO3-RfbR7 and YeO3-c-trs8-R were classified on the basis of sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS/PAGE) profile of isolated lipopolysaccharides (LPS) as belonging to the Ra- (the first) and the Rc-type (the other two mutants). Methylation analysis, in addition to 13C and 1H NMR studies of purified core oligosaccharides revealed structures similar to those established previously for the full core of Y. enterocolitica O:3 in the case of the Ra mutant, and identical to that reported for the Rc mutant Ye75R, in the case of the two other mutants. The O-specific sugar, 6d-l-altrose, which forms a homopolymeric O-chain, was present in small amounts in all three LPS preparations, as well as in the core oligosaccharide preparations along with the Ra and the Rc sugars, characteristic of the Y. enterocolitica O:3 core. This result is in line with genetic data, indicating that it is the inner core region which is the receptor for the O-specific chain in Y. enterocolitica O:3. This region seems likewise to be the anchoring region for the enterobacterial common antigen (ECA), as shown by SDS/PAGE/Western blot analysis with monoclonal antibodies against ECA. In addition, we also demonstrated that the Ye75R mutant Rc and its parental strain Ye75S, both were ECA-immunogenic strains. So far, ECA-immunogenic strains, i.e. those with LPS-linked ECA, were only identified in E. coli mutants of the R1, R4 and K-12 serotype.
The rabbit haemorrhagic disease (RHD) virus was first described in 1984 in China, where it caused a rabbit plague characterized by an acute course. At present, the disease has spread to rabbits on all continents, and is characterized by morality reaching 100%. Research on the immune response in rabbits after infection by RHD virus strains has so far only been performed by the Deptuła team. In turn, it must be stated that similar research worldwide has been performed in the Chinese centre, yet referring exclusively to rabbits after immunization with inactivated RHD virus. Such research indicates that shortly after immunization, the immunity is coordinated by macrophages and lymphocytes T and B, while farther on the protection against the infection is conditioned by humoral immunity. Deptula's team has investigated 22 strains of RHDV in the aspect of non-specific cellular and humoral immunity, as well as specific cellular and humoral immunity including 3 French strains (FR-1, Fr-2, 9905RHDVa), 10 Polish strains (K-l, Kr-1, KGM, SGM, MAŁ, BLA, PD, GSK, Ż, ŻD), 4 German strains (Hagenow, Frankfurt, Triptis, Hartmannsdorf), 3 Italian strains (BS89-reference strain, Vt97, PV97), 1 English strain (Rainham), and 1 Spanish strain (Asturias). The strains were analyzed in the aspect of such parameters as capacity of adherence and absorption of PMN cells, PMN cell cidal property measured with spontaneous, stimulated, and spectrophotometric NBT test, stimulation index and PMN metabolic activity coefficient; and MPO activity, as well as concentration and activity of LZM. Also, the number was marked of lymphocytes T CD5+, Th with receptor CD4+, Tc/Ts with receptor CD8+, and the number of lymphocytes with receptor CD25+, as well as the percentage of lymphocytes B (IgM). The research indicates the presence of immunogroups within the RHD virus. Assessment of pathogenicity of the RHD virus is actually performed based on the mortality rate in rabbits infected with the virus, which is dictated by the fact that the virus has so far not been obtained in vitro. Niedźwiedzka et al. divided the 10 analyzed strains into strains with high pathogenicity with mortality of 90-100%, up to 36/48 hour of the study (BS89, Hagenow, Rainham, Frankfart, Asturias, Triptis, Hartmannsdorf, Pv97, 9905RHDVa), and strains with lower pathogenicity with mortality of 30% up to 36/48h (Vt97). In turn, Tokarz-Deptuła divided the 10 analyzed strains of the RHDV (including 8 Polish and 2 French) into strains with mortality of 80-100% (Fr-2, ŻD, GSK, SGM, Fr-1, Kr-1, MAL), strains with mortality of 60-65% (KGM, BLA), and strains with mortality below 60% (PD). The aim of our study was to record changes to parameters of non-specific cellular immunity (capacity of adherence and absorption of PMN cells, cidal capacity of PMN cells measured with spontaneous NBT test, stimulated and spectrophotometric, and stimulation index and metabolic activity ratio of PMN cells) in rabbits experimentally infected with 4 haemagglutinogenic Czech strains of the RHD virus: CAMPV-351 (reference strain), CAMP-561, CAMPV-562, and CAMPV-558, with different pathogenicity; which strains have not yet been analyzed in this respect. The assessment of pathogenicity of the analyzed strains of the RHDV was performed on the basis of mortality rate among rabbits infected with these strains. On the basis of the number and duration of changes to analyzed parameters of non-specific cellular immunity, the 4 analyzed Czech strains are determined to differentiate in the aspect of immunogenicity into three groups. The first group is formed by the most immunogenic reference strain CAMPV-351, the second - by two medium-immunogenic strains - CAMPV-561 and CAMPV-558, whereas the third one - by the least immunogenic strain CAMPV- 562. The results obtained in the area of pathogenicity are not reflected in the division of the analyzed Czech strains according to their immunogenicity.
Immunogenicity of six strains of Trichophyton mentagrophytes var. granulosum isolated from arctic foxes with ringworm was evaluated in guinea pigs and foxes. Two strains of T. mentagrophytes (Tm-3 and Tm-4) out of six examined (Tm- 1, Tm-2, Tm-3, Tm-4, Tm-5 and Tm-6) induced in the experimental foxes a strong cellular immune response measured by the leukocyte migration inhibition test (LMIT), lymphocyte transformation test (LTT), and by skin delayed-type hypersensitivity (DTH). The guinea pigs immunised with Tm-3 and Tm-4 were well protected against the artificial infection with the virulent strain of T. mentagrophytes (Tm-9). These two strains of T. mentagrophytes with high immunogenic properties were used for production of a vaccine against ringworm in foxes.
Evaluation of the immunogenicity of the vaccine against respiratory tract infections in calves caused by Pasteurella multocida, and prepared from antigen of a local strain of serotype 3 with oil adjuvant addition, was the object of the prescnt studies. Two experiments were carried out using calves. Vaccine was given them at a dose of 2 ml i.m., twice every 14 days. In experiment 1, sera were obtained before vaccination, 2 and 5 weeks after the first vaccination, in experiment 2 - before vaccination, 2 weeks, 1 and 2 months after the first vaccination. lmmunogenicity of the vaccine was evaluated by means of an agar gel immunodiffusion (AGID) test and an ELISA test. The carrier-state of Pasteurella multocida on mucous membrane of nasal cavity was examined. lt was found that immunisation stimulated the production of the specific precipitins for serotype 3 and it caused the increase of IgG level found using ELISA test with microplate coated with whole-bacterium antigen or LPS of that serotype. The investigation confirms the good immunogenicity of the vaccine.
The outer membrane proteins (OMPs) are the most immunogenic and attractive of the Moraxella catarrhalis vaccine antigens that may induce the protective immune response. The aim of this study was to determine the effectiveness of two types of OMP-associated phosphatidylcholine (PC) liposomal formulations (OMPs-PC, PC-OMPs) and of Zwittergent-based proteomicelles (OMPs-Z) in potentiating an anti-OMP systemic immune response in mice. The immunogenicities of the above preparations were evaluated by assessing serum anti-OMP IgG and IgA reactivity in the post-immunized mouse antisera using ELISA and Western blotting. Additionally, the cross-reactivity of the most effective anti-OMP response was determined using heterologous sera from both humans and mice. Both the proteoliposomes and the proteomicelles showed high immunogenic properties and did not elicit any distinct quantitative differences in the antibody titer or qualitative differences in the pattern of the mouse antisera. The post-immunized mouse antisera predominantly recognized a ∼60-kDa OMP of M. catarrhalis. That protein was also found to be a highly cross-reactive antigen interacting with a panel of pooled mouse antisera produced by immunization either with whole cells or the purified OMPs of heterologous M. catarrhalis strains. Furthermore, normal sera collected from healthy children were found to be preferentially reactive with the 60-kDa OMP. The serum-specific IgG, IgA and IgM were respectively detected via immunoblotting in 90%, 85% and 30% of heterologous human sera. This similar immunogenic effectiveness of both OMP-associated liposomal formulations could contribute to the practical use of such formulations in the future in human vaccination. Moreover, the highly cross-reactive 60-kDa OMP seems to be an important antigenic marker of M. catarrhalis, and, as it is responsible for the induction of an antibody-mediated and long-lasting immune response, studying it may partially aid us in understanding the relatively low degree of pathogenicity of the bacterium in immunocompetent individuals.
The adaptation and immunogenisity of Cryptosporidium parvum isolated from Siberian chipmunks (SC1 strain) in immunocompetent (ICR) mice were examined. The oocysts were received to the severe combined immunodeficiency (SCID) mice by repeated passage. The oocysts collected from the 18th SCID mice were inoculated to 5 ICR mice. The mice began to shed oocysts from 6 days after inoculation, the patency was 5 days, and the maximum oocysts per gram of feces (OPG) value was 104. The maximum of OPG value was gradually increased by successive passage, and finally that in the 22nd mice reached 106 (patency: 11 days). It is considered that these results indicate completion of their adaptation to ICR mice. To examine the immunogenicity of C. parvum to ICR mice, 8 groups of 5 mice each were inoculated with 1.3 × 106 oocysts of SC1 strain, which were collected after adaptation to SCID mice. All groups shed oocysts from 6th day, and their patency was from 8 to 12 days. On the 21st day after the primary infection, these mice were challenged with 1.3 × 106 oocysts. No oocysts shed from any groups, although 2 control groups shed oocysts from the 6th day, and their OPG values were more than 106. These results suggest that this strain has strong immunogenicity against ICR mice. Therefore, the immunological healthy mice were considered a useful experimental model to investigate immunological and drug treatments in the strain of C. parvum.
Immunogenic C. coli CjaA protein is a candidate for a chicken anti-Campylobacter subunit vaccine. In order to enhance its immunogenicity an antigenic determinant of the CjaA protein was identified. Thereafter, two copies of the antigenic epitope were cloned in tandem directly or with a flexible hinge between them. All experiments documented that the CjaA protein contained not only linear antigenic epitope/s but also conformational ones.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.