Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  horizontal gene transfer
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Recent studies suggest that horizontal gene transfer (HGT) played a significant role in the evolution of eukaryotic lineages. We here review the mechanisms of HGT in plants and the importance of HGT in land plant evolution. In particular, we discuss the role of HGT in plant colonization of land, phototropic response, C4 photosynthesis, and mitochondrial genome evolution.
The presence and distribution of CRISPR (clustered regularly interspaced short palindrome repeat) elements in the archaeal order Thermococcales were analyzed. Four complete genome sequences from the species Pyrococcas abyssi, P. furiosus, P. horikoshii, and Thermococcus kodakaraensis were studied. A fragment of the genome of P. furiosus was flanked by CRISPR elements upstream and by a single element downstream. The composition of the gene sequences contained in this genome fragment (positions 699013 to 855319) showed significant differences from the other genes in the P. furiosus genome. Differences were observed in the GC content at the third codon positions and the frequency of codon usage between the genes located in the analyzed fragment and the other genes in the P. furiosus genome. These results represent the first evidence suggesting that repeated CRISPR elements can be involved in horizontal gene transfer and genomic differentiation of hyperthermophilic Archaea.
This review focuses on plant-to-plant horizontal gene transfer (HGT) involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA) of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting) facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.
The procedures for GMO safety tests include traceability of transgenic protein and transgenic DNA if the plant constitutes a component in the diet for an animal. This is due to the possibility of horizontal transfer of genes, accumulation of transgenic DNA in consumer’s organs, or induction of antibiotic resistance in gastrointestinal tract microflora. The last possibility is related to the use of marker genes in the process of transformation. In an in vivo experiment conducted on laboratory rats with the use of transgenic cucumbers expressing the pre-prothaumatin gene, the presence of transgenic DNA in the tissue of kidneys and liver was not detected. Resistance to neomycin of gastrointestinal tract microflora of the rats fed the GMO diet was not found, despite the use of marker genes (npt II) in the process of transformation of the investigated plants.
Infectious diseases still remain the main cause of human premature deaths; especially in developing countries. The emergence and spread of pathogenic bacteria resistant to many antibiotics (multidrug-resistant strains) have created the need for the development of novel therapeutic agents. Only two new classes of antibiotics of novel mechanisms of action (linezolid and daptomycin) have been introduced into the market during the last three decades. The recent progress in molecular biology and bacterial genome analysis has had an enormous impact on antibacterial drug research. This review presents new achievements in searching a new bacterial essential genes, a potential targets for antibacterial drugs. Application of metagenomics strategy is also shown. Some recent technologies aimed at development of anti-pathogenic drugs such as inhibitors of quorum sensing process or histidine kinases are also discussed. Extensive research efforts have provided many details concerning structure of bacterial proteins playing an important role in pathogenesis such as adherence proteins or toxins, what allowed searching for antitoxin drugs or drugs interfering with bacterial adhesion. As an example, the review focuses on anthrax therapies under development. Additionally, the article presents the progress in phage therapy; using bacteriophages or their products such as lysins in antibacterial therapy.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.