Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 131

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 7 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  hippocampus
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 7 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
To understand how sensory experiences are stored in the brain, we examined neuronal fi ring in hippocampus during tactile behavior. Rats learned to associate stimulus texture with reward location; multiple textures were associated with the same reward location and thus formed a behavioral category. Rapid fi ring rate modulation carried texture identity information (10% of neurons), free from spatial and behavioral confounds; slow fi ring rate modulation carried behavioral category information (63% of neurons). Category information appeared during texture contact, simultaneous with an increase in theta power in the local fi eld potential; it persisted or recurred during reward collection, when theta power was suppressed and “reward neurons” (8%) fi red. Reward-triggered recurrence of category information could be a mechanism to link stimulus, action, and outcome when separated in time.
Previous studies have demonstrated that repeated submission of rats to mild hypobaric hypoxia reduces the persistent behavioral and hormonal depressive symptoms induced by exposure to footshock in the learned helplessness paradigm. The aim of this study was to determine whether hypoxic preconditioning of mice can also induce antidepressant- and anxiolyticlike effects that are detectable with the other commonly used behavioral tests, and to determine whether these effects are accompanied by an increase in neuropeptide Y (NPY) in the hippocampus, which may suggest the involvement of NPY in these mechanisms. The intermittent mild hypobaric hypoxia was generated by 2-h exposure of mice to 0.47 atm for 3 consecutive days. In the tail suspension test a significant decrease in the duration of immobility was observed 24 h, but not 48 h after the last hypobaric session. The elevated plus maze trials performed 48 h after preconditioning showed a significant increase in the frequency of open arm entries, a reduction in the duration of closed arm occupancy and substantially more time spent in the open arms in comparison to the control groups. The open field test demonstrated the absence of increases in general activity or unspecific exploratory behavior in hypoxia-preconditioned mice. The EIA test detected a statistically significant but relatively weak increase in the NPY content in the hippocampus 24 h after preconditioning. Together, our data demonstrate that preconditioning of mice with intermittent mild hypobaric hypoxia induces anxiolytic- and antidepressantlike effects. They are accompanied by up-regulation of NPY which may suggest its mechanistic role.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair and transcription regulation. The aim of this study was to investigate the role of PARP-1 in muscarinic cholinergic receptor signaling. Our data indicate that activation of muscarinic cholinergic receptors by carbachol (1mM) in the presence of GTPS evoked a significant enhancement of PARP activity in the adult rat hippocampus. Moreover, TMB-8 (10µM), an antagonist of inositol 1, 4, 5 trisphosphate (IP3) receptor prevented the activation of PARP-1, which indicates that IP3 /Ca2+ signaling is involved in this pathway. The diacylglycerol (DAG)-regulated protein kinase C (PKC) inhibitor (GF109203X) (1µM) only slightly enhanced PARP activity in hippocampal nuclear fractions, which suggests that DAG/ PKC is not involved in PARP activation.
The expression of matrix metalloproteinase of the first type was studied in frontal sections of the adult rat brain one month after a single intracerebroventricular injection of P-amyloid peptide (25-35), which is known to be a well-known model of the development of Alzheimer's disease. Brain sections were stained immunocytochemically to detect MMP-1 expression, and histologically to reveal the state of hippocampal neurons. Administration of P-amyloid peptide induced a significant degeneration of cells in the dorsal hippocampus. This was demonstrated by a significant decrease in the total number of cells and by the appearance of acidophilic neurons of altered (often triangular) shape. Altered cells were most often found in the hippocampal field CA3, and in a smaller quantity in the CA1 field. MMP-1-like immunoreactivity was found in the same hippocampal areas, the staining being restricted to the cells of altered shape (staining of somata and primary neurites). The data suggest possible involvement of the type 1 metalloproteinase in the development of Alzheimer's disease.
The influence of chronic ethanol intoxication on the terminal vascularization of particular hippocampal fields and layers was investigated in different age groups of rats. Thirty-six male Wistar rats aged 6 weeks were used in the study. For twelve months 24 of them drank only 25% ethanol — 12 starting at 6-week- -age and 12 at 3-month-age. The control group of 12 rats drank only water. As an effect of long-term ethanol exposure on hippocampal capillaries we observed the increase in the terminal vessel diameter and the decrease in microvascular length, surface, and volume densities. These changes varied between different age groups and between particular hippocampal regions. The observed age and regional differentiation of ethanol-related microvascular changes did not correlate well with the damaging effects of alcohol on corresponding neuronal elements, which emphasizes the very complicated pathogenesis of ethanol-induced injuries.
The relationship of the amygdaloid body to the hippocampal formation and lateral ventricle was studied on MRI slabs of brains of 25 volunteers. Considering the presence of the hippocampal formation and/or uncal sulcus on a cross-section three segments of the amygdaloid body were distinguished in rostro-caudal order: prehippocampal, suprahippocampal anterior (preuncal) and suprahippocampal posterior (uncal), each one presenting characteristic features. The lengths of the amygdaloid body and of its segments were calculated. In each segment the great variability of the topographical relations was found. Especially in the suprahippocampal anterior segment the relation of the lateral ventricle to both, the amygdaloid body and hippocampus shows great differences, even between the right and left side.
Manipulation of gene expression in developing or in mature central nervous systems (CNS) holds a promise for the resolution of many compelling neurobiological questions, including the feasibility of gene therapy to treat diseases of the brain. In this context, a number of viral vectors have been used in recent years to introduce and express genes into the CNS. This article discusses a gene transfer system based on the Herpes Simplex Virus-1 (HSV-1). We describe here the use of non-replicating, non-toxic HSV-1 vector, 8117/43, in a series of studies carried in our joint program. This vector proves further the utility of HSV-1 as a delivery vehicle to a number of distinct sites within the CNS.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 7 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.