Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  heme oxygenase-1
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Heme oxygenase-1 (HO-1) is an enzyme which catalyzes the rate-limiting step in heme degradation resulting in the formation of iron, carbon monoxide and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase. The biological effects exerted by the products of this enzymatic reaction have gained much attention. The anti-oxidant, anti-inflammatory and cytoprotective functions associated with HO-1 are attributable to one or more of its degradation products. Induction of HO-1 occurs as an adaptive and beneficial response to several injurious stimuli including heme and this inducible nature of HO-1 signifies its importance in several pathophysiological disease states. The beneficial role of HO-1 has been implicated in several clinically relevant disease states involving multiple organ systems as well as significant biological processes such as ischemia-reperfusion injury, inflammation/immune dysfunction and transplantation. HO-1 has thus emerged as a key target molecule with therapeutic implications.
Stress response genes including heat shock proteins are induced under a variety of conditions to confer cellular protection. This study investigated the role of calcium signaling in the induction of two stress response genes, heme oxygenase-1/hsp32 and hsp70, in isolated rat hepatocytes. Both genes were induced by cellular glutathione depletion. This induction could be inhibited by BAPTA-AM. Culturing in a calcium-free medium prevented the induction of hsp70 gene expression after glutathione depletion without affecting heme oxygenase-1 gene expression. Thapsigargin increased the gene expression of heme oxygenase-1 but not that of hsp70. Thapsigargin-induced heme oxygenase-1 induction was completely inhibited by BAPTA-AM. Incubation with the Ca2+-ionophore A23187 augmented heme oxygenase-1 (two-fold) and hsp70 (5.2-fold) mRNA levels. Our data suggests a significant role of Ca2+-dependent pathways in the induction of the two stress genes. An increase in the cytoplasmic Ca2+ activity seems to play a key role in the cascade of signaling leading to the induction of the two genes. However, the source of Ca2+ that fluxes into the cytoplasm seems to be different. Our data provides evidence for a compartmentalization of calcium fluxes, i.e. the Ca2+ flux from intracellular stores (e.g. the endoplasmic reticulum) plays a major role in the induction of heme oxygenase-1. By contrast, Ca2+ flux from the extracellular medium seems to be a mechanism initiating the cellular signaling cascade leading to hsp70 gene induction.
Objective: It was reported that some effects of pentoxifylline (PTX) are mediated by heme oxygenase-1 (HO-1) induction. We investigated the role of HO-1 in anti-inflammatory activity of PTX. Methods: Experiments were performed in human and murine monocytes and endothelial cells and in HO-1 deficient mice. Results: PTX dose-dependently decreased expression of HO-1 in cell lines studied. As expected, PTX reduced also production of TNF. This effect was independent of HO-1 activity, as demonstrated in cells treated with HO-1 activators and inhibitors or in cells overexpressing HO-1. Moreover, inhibition of TNF was the same in human endothelial cells of different HO-1 genotypes, showing that PTX is similarly efficient in carriers of more and less active HO-1 promoter variants. In mice, PTX did not influence HO-1 expression, as measured in liver, kidney, spleen, heart, and skin. Accordingly, the response of PTX treated animals to LPS was the same in wild type and HO-1 deficient mice. PTX to a similar extent increased influx of leukocyte into peritoneal cavity, decreased production of TNF and reduced expression of VCAM-1 in vascular intima. Conclusion: PTX inhibits production of TNF and may decrease inflammatory reaction both in vitro and in vivo, but these effects are independent of HO-1.
The effect of lansoprazole, a proton pump inhibitor (PPI), on indomethacin-induced small intestinal ulceration was examined in rats, particularly in relation to heme oxygenase (HO)-1. The animals were administered indomethacin (10 mg/kg, p.o.) and killed 24 h later. Lansoprazole (30-100 mg/kg, p.o.) and omeprazole (30-100 mg/kg, p.o.) were given 30 min before the administration of indomethacin, while tin-protoporphyrin IX (SnPP: 30 mg/kg, i.v.), an inhibitor of HO-1, was injected 10 min before indomethacin or lansoprazole. Indomethacin produced hemorrhagic lesions in the small intestine, accompanied with an increase of mucosal invasion of enterobacteria, inducible nitric oxide synthase (iNOS) expression, and myeloperoxidase (MPO) activity in the mucosa. Pretreatment with lansoprazole dose- dependently reduced the severity of the indomethacin-induced intestinal lesions, with suppression of the increased MPO activity, while omeprazole had no effect. Pretreatment with SnPP significantly exacerbated these intestinal lesions and almost totally abolished the protective effect of lansoprazole. The up-regulation of iNOS mRNA expression following indomethacin was suppressed by lansoprazole in a SnPP-inhibitable manner, although the enhanced enterobacterial invasion remained unaffected. The amount of HO-1 protein in the intestinal mucosa was significantly increased by lansoprazole but not by omeprazole. Prior administration of carbon monoxide (CO)-releasing molecule-2 (CORM-2; 10 mg/kg, i.p.) significantly reduced the severity of these lesions and the enhancement of mucosal iNOS mRNA expression induced in the small intestine by indomethacin. These results suggest that lansoprazole prevents indomethacin-induced small intestinal ulceration, and this effect is associated with inhibition of iNOS expression, through up-regulation of HO-1/CO production in the mucosa.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.