Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 35

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  glutathione reductase
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This review summarizes some of the recent findings concerning the long-held tenet that the enzyme, N-acetyltransferase, which is involved in the production of N-acetylserotonin, the immediate precursor of melatonin, may in fact not always control the quantity of melatonin generated. New evidence from several different laboratories indicates that hydroxyindole-O-methyltransferase, which O-methylates N-acetylserotonin to melatonin may be rate-limiting in some cases. Also, the review makes the point that melatonin's actions are uncommonly widespread in organs due to the fact that it works via membrane receptors, nuclear receptors/binding sites and receptor-independent mechanisms, i.e., the direct scavenging of free radicals. Finally, the review briefly summarizes the actions of melatonin and its metabolites in the detoxification of oxygen and nitrogen-based free radicals and related non-radical products. Via these multiple processes, melatonin is capable of influencing the metabolism of every cell in the organism.
In erythrocytes of rats bearing Morris hepatoma 5123 the activities of superoxide dismutase, glutathione peroxidase and glutathione reductase as well as the level of reduced glutathione increased on the 10th day after transplantation of the tumor. In the second phase of the tumor growth (20 days after transplantation), the activities of glutathione peroxidase, glutathione reductase and the level of reduced glutathione in erythrocytes of the experimental animals were lower than in controls, whereas the activity of superoxide dismutase was at that time higher than in controls. On the other hand, the activity of catalase did not significantly differ from that found in healthy rats.
The activity of glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) was investigated in liver and kidney of rats exposed to cadmium (Cd) and ethanol (EtOH) alone and in combination. Rats were treated with 50 mg Cd/dm3 in drinking water and/or 5 g of EtOH/kg body wt/24 h intragastrically, for 12 weeks. Exposure to Cd led to an increase in GPx and GST activity with a simultaneous decrease in GR activity in the liver. In the kidney of rats treated with Cd, an increase in the activity of GPx and GR was noted. In the EtOH-exposed rats, GPx activity decreased in the liver, but increased in the kidney. Exposure to EtOH caused a reduction in GR activity only in the liver. The co-exposure to Cd and EtOH led to an increase in the liver and kidney GPx activity compared to control. In the rats simultaneously exposed to Cd and EtOH liver activity of GR decreased compared to control, whereas the kidney GR activity increased compared to control as well as to the groups treated with Cd and EtOH seperately. The co-exposure to Cd and EtOH led to an increase in the liver activity of GST compared to the control and EtOH groups. Analysis of variance (ANOVA/MANOVA) revealed that the changes noted in the activity of investigated enzymes in the Cd + EtOH group resulted from the independent action of both Cd or EtOH as well as from their interactive ac­tion. Numerous correlations (negative or positive) were noted between the activity of GPx, GR and GST, and the concentration of GSH, Cd and MDA in the liver and kidney. On the basis of our results it can be concluded that changes in the activity of GPx, GR and GST in the liver and kidney may be involved in the mechanism leading to a decrease in GSH concentration in these organs due to exposure to Cd and EtOH alone and in conjunction with each other.
We investigated glutathione level, activities of selenium independent GSH peroxidase, selenium dependent GSH peroxidase, GSH S-transferase, GSH reductase and the rate of lipid peroxidation expressed as the level of malondialdehyde in liver tissues obtained from patients diagnosed with cirrhosis or hepatocellular carcinoma. GSH level was found to be lower in malignant tissues compared to adjacent normal tissues and it was higher in cancer than in cirrhotic tissue. Non-Se-GSH-Px activity was lower in cancer tissue compared with adjacent normal liver or cirrhotic tissue, while Se-GSH-Px activity in cancer was found to be similar to its activity in cirrhotic tissue and lower compared to control tissue. An increase in GST activity was observed in cirrhotic tissue compared with cancer tissue, whereas the GST activity in cancer was lower than in adjacent normal tissue. The activity of GSH-R was similar in cirrhotic and cancer tissues, but higher in cancer tissue compared to control liver tissue. An increased level of MDA was found in cancer tissue in comparison with control tissue, besides its level was higher in cancer tissue than in cirrhotic tissue. Our results show that the antioxidant system of cirrhosis and hepatocellular carcinoma is severely impaired. This is associated with changes of glutathione level and activities of GSH-dependent enzymes in liver tissue. GSH and enzymes cooperating with it are important factors in the process of liver diseases development.
The combined effects of enhanced UV-B radiation and soil drought on antioxidant enzyme activity were investigated in cucumber leaves. One-month-old cucumber plants (Cucumis sativus cv. Dar) were exposed to UV-B irradiation and water deficit alone or combined. Physiological measurements were made in seedlings kept under stress conditions for nine days and then two more days with stresses withdrawn. Generally a decrease in relative water content and an increase in dry weight content were recorded. The more significant changes were observed under drought than under UV-B radiation and or combined UV-B and drought. Both stresses stimulated antioxidant enzyme activity. Superoxide dismutase activity increased earlier (day 2) than guaiacol peroxidase and glutathione reductase activity (days 5 and 7). Elevation of enzyme activities was higher under drought than under UV-B. Combined UV-B and drought functioned synergistically: one of the stresses reduced the effects caused by simultaneous application of the other.
The aim of the study was the evaluation of cadmium effects on the activity of antioxidant enzymes in rat hepatocytes. The studies were conducted with isolated rat hepatocytes incubated for 1 or 2 hours in a modified (deprived of carbonates with phosphates) Williams’ E medium (MWE) in the presence of cadmium chloride (25, 50 and 200 μM). Hepatocytes incubated in the MWE medium without cadmium chloride were used as a control. The application of the modified Williams’ E medium allowed for the appearance of cadmium compounds in a soluble form that is indispensable for suitable estimation of its toxic action. There were evaluated markers of the oxidative stress such as: concentration of thiobarbiturate reactive substances (TBARS) – proportional to the level of lipid peroxidation, concentration of reduced glutathione (GSH), and the activity of antioxidant enzymes, including superoxide dismutase (SOD1 and SOD2), catalase (CAT), total glutathione peroxidase (GSHPx), selenium – dependent glutathione peroxidase (SeGSHPx), glutathione transferase (GST) and glutathione reductase (GSHR). Alterations of antioxidant enzymes activity, the level of TBARS and GSH in isolated rat hepatocytes caused by cadmium in vitro, were shown to depend on the concentration and time of exposure of cells to this metal. The increased level of TBARS and GSH was observed as well as changes in the activity of antioxidant enzymes. The activity of SOD isoenzymes and CAT was increased, whereas GSHPx and GST were decreased. These results indicate that cadmium induces oxidative stress followed by alterations in the cellular antioxidant enzyme system in isolated rat hepatocytes.
Glutathione reductase (GR, E.C 1.6.4.2) is a flavoprotein that catalyzes NADPH-dependent reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH). The aim of this study was to investigate in vitro effects of phenolic compounds isolated from Sideritis brevibracteata on bovine kidney GR. The Sideritis species are widely found in nature and commonly used as medicinal plants. 7-O-glycosides of 8-OH-flavones (hypolaetin, isoscutellarein and 3'-hydroxy-4'-O-methylisoscutellarein) were isolated from aerial parts of Sideritis brevibracteata. These compounds inhibited bovine kidney cortex GR in a concentration-dependent manner. Kinetic characterization of the inhibition was also performed.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.