Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  flood plain lake
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The fate of phytoplankton communities in different hydrological and hydrochemical conditions was studied in the middle basin of the Biebrza River (NE Poland). Our results showed that hydrological connectivity significantly influenced phytoplankton abundance in floodplain lakes: minimal abundance was stated in lotic and maximal in lentic waterbodies. Phytoplankton diversity and species richness were related to changes in water levels. During the low-water phase, phytoplankton biodiversity was the lowest in lentic and the highest in lotic lakes. High water levels promoted exchanges in species among waterbodies and the river, which increased biodiversity indices. We concluded that the isolation of any floodplain lake from the river channel deteriorates its trophic conditions. Thus, the decrease in phytoplankton biodiversity in floodplain lakes should be regarded as an indirect feedback of the hydrobionts on the hydrological factors.
Water quality parameters of floodplain lakes may be indicative of the intensity of groundwater recharge. The main assumption made in the study is that the direct influence of groundwater recharge is reflected in the vertical gradient of temperature and aeration along the whole water column. Considering this, we seasonally monitored physical and chemical properties of 22 oxbow lakes in postglacial river valleys (the Słupia, Drwęca and Łyna rivers) in temperate climate zone in the southern watershed of the Baltic Sea (N Poland). The results were compared with groundwater samples from transects of piezometers located near the floodplain lakes. The floodplain water bodies showed variability (both in vertical and spatial dimensions) in temperature, aeration and electrolytic conductivity, affected mainly by different sources of water supply. The temperatures and dissolved oxygen contents declined not only with the increasing depth of water and a distance from the river channel, but also a significant drop in the parameters’ values have been associated with groundwater recharge within the floodplain edge.
Floodplains are lateral river extensions in which lotic, semi-lotic and lentic habitats are formed resulting in high habitat heterogeniety. Consequently biota development is highely influenced by its location within the floodplain and by the hydrological cycle. In the present paper the development of planktonic and biofilm bacteria associated with artificial substrates were investigated in the floodplain lake of the Danube River (Lake Sakadaš, Croatia) during different hydrological situations. The aim of the study was to investigate if there was any difference in the bacterial development between two compartments – plankton and biofilm, and how the floods influence these communities. The samples were taken monthly (July–November 2007) from surface and bottom water layer (plankton) and exposed glass slides (biofilm) at two sampling stations. For these purposes bacterial abundance was estimated by the determination of number of colony forming units (CFUs). The development of bacterioplankton was equal between the sites and had its maximum at the time of falling water after the flood pulse. Bacterioplankton abundance correlated significantly with water properties, and it had predictable dynamics comparable with the previous results established in the same floodplain area (Kopački Rit). The development of biofilm bacteria differed between the sites, and had its maximum prior to the flood pulse, or during the flood. The abundance of attached bacteria correlated with biofilm biomass while it was not significantly correlated with the water properties. Such results describe different development of planktonic and biofilm bacteria. Biofilm bacteria are more independent, compared to bacterioplankton, from the floodplain hydrology.
Studies were carrying out in two shallow (mean depth ≈ 0.3 m) and small (area 2.7–8.2 ha) river lakes, which were flooded by water of River Bug (Eastern Poland) once a year (in spring). The species composition, biomass of phytoplankton and concentration of chlorophyll awere studied. Samples were taken in June (after flooding) and in August (after three months of isolation from river water). About 150 species of phytoplankton were determined. After the flood period phytoplankton biomass was dominated by nannoplankton belonging to Cryptophyceae and Chrysophyceae (strategy-r) and in the stabilization period by microplanktonic green and blue–green algae (strategy-K). The higher biomass and concentration of chlorophyll a values were noted in August than in June. The differentiation of phytoplankton was also stated between near-by stations in both lakes.
Periphyton colonisation on artificial substrate (microscopic glass slides) was investigated from July to November 2007, in Lake Sakadaš (Danube River floodplain Kopački rit, Croatia). Two different stations were chosen due to different post – flood conditions. The aim of the study was to follow temporal changes of nematode community composition and trophic structure in relation to periphyton biomass and bacterial abundance. In bryozoan – dominated periphyton (Plumatella emarginata Allman, 1844) nematodes were represented by 86 and 87% of total associated invertebrate fauna at S1 and S2 respectively. Total nematode abundance (up to 600 ind. 10 cm-2 at one station and up to 1130 ind. 10 cm-2 at another station) correlated significantly with the abundance (meaured as CFUs – colony forming units) of copiotrophic and oligotrophic bacteria at one station (r = 0.963, 0.998, P <0.05) and with organic and inorganic content of periphyton at another station (r = 0.891, 0.899, P <0.05). Nematode trophic groups (epistrate feeders, chewers, detritus feeders and suction feeders) were equally developed at both stations except detritus feeders whose species richness and abundance were significantly higher at the S1. Epistrate feeders were the most abundant trophic group in nematode assemblages at both stations with Chromadorina bioculata being the dominant species. Change in dominance of epistrate feeders by chewers (Brevitobrilus stefanskii) and suction feeders (Crocodorylaimus sp.) coincided with the occurrence of flood pulse. Effect of flood pulse on nematode community structure was probably indirect, alterating concentration of dissolved oxygen which chromadorids are sensitive to. The structure of nematode community developed through time differs between investigated stations indicating high sensitivity to bacterial abundance, periphyton biomass and P. emarginata mats which made the habitat more diverse and patchy.
Seasonal changes of water level, aquatic chemistry and phytoplankton composition of the Daugava’s floodplain lake Grīvas was studied in 1999. Significant influence of the Daugava’s floods on the lake’s water level was found. Filling, drainage and isolation phases in hydrological regime of the lake were distinguished. The Daugava’s floodwater influx in April caused considerable water level rising and dilution of the lake’s water column. Small diatoms and greens formed the spring maximum at the highest water level. After the floods, concentration of total diluted solids and nutrients increased, typical planktonic algae species were replaced by epiphytic and benthic species and rich macrophyte vegetation developed as in other shallow lakes.
This study investigated relationships of hydrological variability and potential food resources for metazooplankton groups: rotifers, cladocerans, copepods and nauplii. Samples were collected monthly during ice-free season from March until November in 2006. Two sampling stations were chosen, the one located in Lake Sakadaš, as a segment of Kopački Rit floodplain (Croatia), and the other in the River Danube. Due to hydrological conditions we divided our samples into two hydrological groups which corresponded to: 1/ increased water level i.e. disturbed phase and 2/ decreased water level representing a more stable phase. Abundance of metazooplankton was not significantly different between hydrological groups in the River Danube. However, it was significantly different between hydrological groups in Lake Sakadaš (one-way ANOSIM R = 0.688, P = 0.024), where during a decreased water level higher abundance of metazooplankton was recorded. Rotifers were the most abundant metazooplankton group during the whole investigated period at both stations and between both hydrological groups comprising almost 99% of total metazooplankton abundance. Rotifers were significantly positively correlated with the total number of bacteria, as well as with ammonium and total phosphorous concentrations. The metazooplankton community in Lake Sakadaš was negatively influenced by flooding, but not in the River Danube. Compared to the River Danube the investigated floodplain lake showed potential as a storage zone for metazooplankton development during more stable hydrological periods. During that time abundance of rotifers was related to the heterotrophic component of microbial food web. Hence, this investigation adds to the understanding of the metazooplankton dynamics in riverfloodplain systems as well as of their relations with trophic levels under variable hydrological conditions.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.