Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  confocal laser scanning microscopy
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Non-diphtherial corynebacteria are Gram-positive rods that cause opportunistic infections, what is supported by their ability to produce biofilm on artificial surfaces. In this study, the characteristic of the biofilm produced on vascular and urological catheters was determined using a confocal microscopy for the most frequently involved in infections diphtheroid species. They were represented by the reference strains of Corynebacterium striatum ATCC 6940 and C. amycolatum ATCC 700207. The effect of ciprofloxacin on the biofilm produced by the antibiotic-susceptible C.striatum strain was evaluated using three concentrations of the antimicrobial agent (2×, 4×, and 6× the MIC – the Minimum Inhibitory Concentration). The basis for the interpretation of results was the statistical analysis of maximum points readings from the surface comprising a total of 245 areas of the biofilm image under the confocal microscope. It was observed that ciprofloxacin at a concentration equal to 4×MIC paradoxically caused an enlargement of areas with live bacteria within the biofilm. Biofilm destruction required the application of ciprofloxacin at a concentration higher than 6×MIC. This suggests that the use of relatively low doses of antimicrobial agents may increase the number of live bacteria within the biofilm, and further facilitate their detachment from the biofilm’s structure thus leading to the spread of bacteria into the bloodstream or to the neighboring tissues. The method of biofilm analysis presented here provides the original and novel approach to the investigation of the diphtheroid biofilms and their interaction with antimicrobial agents.
It has become increasingly apparent that vesicular drag delivery elicits modest possessions in drag targeting. Transfersomes are a form of elastic or deformable vesicle, which were first introduced in the early 1990s. Elasticity can be achieved by using an edge activator in the lipid bilayer stracture. Molecules greater than 500 Da normally do not cross the skin. This prevents epicutaneous delivery of the high molecular weight therapeutics as well as non-invasive trans-cutaneous immunisation. Transdermal route will always remain a lucrative area for drag delivery. With the advent of new categories of drugs like peptides this route has captured more focus to combat the problems related to their delivery through oral route. But the transdermal route is equally filled with the hopes and disappointments as the transport of drag through this route faces many problems especially for the large molecules. To answer this problem many approaches were adopted. One of the very recent approaches is the use of ultra-defonnable carrier systems (transfersomes). They have been used as drag carriers for a range of smali molecules, peptides, proteins and vaccines, both in vitro and in vivo. Transfersomes penetrate through the pores of stratum comeum which are smaller than its size and get into the underlying viable skin in intact form. This is because of its deformable nature. The aim of this article is explanation the formation of micelle and vesicles, various types of vesicles, specifically focusing on transfersomes.
Results of anatomical studies on the developing pericarp of selected wild roses are presented. Using SEM and CLSM, the changes in the pericarp structure of 5 species have been observed during its formation, from the flowering stage to fully ripe achenes. In the morphological development of the pericarp of Rosa species two main phases can be distinguished: the phase of intensive growth of the pericarp during which the fruit achieves its final shape and volume, and the subsequent phase of pericarp ripening when no significant morphological changes in the pericarp occur. Similarly, in the process of the anatomical development of the pericarp two phases are noticeable, however, during both stages, great internal changes proceed in the fruit. The first phase consists of intensive cell divisions and enlargement, gradual thickening of cell walls and formation of all pericarp layers. Due to these changes, the pericarp achieves its final anatomical structure. The second phase, involving the pericarp ripening, is manifested in the modification of cell walls, mainly by their quick thickening, but first of all by their lignification. The lignification of pericarp cell walls begins in the inner endocarp; it proceeds in the outer endocarp, later in mesocarp and finishes in the hypodermal cells of the exocarp. The epidermal cells remain alive the longest and their walls do not (or hardly) become lignified. The death of all cells finishes the pericarp ripening.
This review describes the ionic mechanisms involved in the nodal swelling of frog myelinated axons caused by specific marine neurotoxins (ciguatoxins, brevetoxins, Conus consors toxin and equinatoxin-II), analysed using confocal laser scanning microscopy. We have focussed on toxins that either target neuronal voltage-dependent Na+ channels, or that form cation-selective pores and indirectly affect the functioning of the Na+-Ca++ exchanger.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.