Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  chemical process
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Marceli Nencki 1847-1901

100%
Soil organic carbon (SOC) is one of the basic soil parameters which takes part in many biological, chemical and physical soil processes and the SOC is currently considered as a key indicator of soil quality. For this reason determination of the SOC is a part of soil complex monitoring which has been performed in Slovakia since 1993. From 1993 until 2007 the “wet” method of determination of the SOC was used. Since 2008 the “dry” method for determination of the SOC has been applied. The goal of this work has been to evaluate and compare two methods of the SOC determination; the “wet”(Ťiurin method in modification of Nikitin (TN)) and the “dry” determination of the SOC by means of the CN analyser (EA), which was performed on 95 soil samples of topsoil coming from 17 sampling sites with a wide range of the SOC (1–15%). Sampling sites include arable lands and grasslands and represent main soil types and subtypes of Slovakia. On the basis of statistical processing it has been found that in soils with the SOC content up to 3%, differences between two methods are minimal. However, in the case of a higher content of the SOC, the EA method reaches a higher value than the TN method. Obtained data shows that in the case of soil samples with a higher content of the SOC, when changing an analytical method, the PTF function that reduces differences and allows to use all time series monitoring data should be used for the purpose of the tracking trends of the SOC monitoring.
 Glycosylation is the most common chemical process of protein modification and occurs in every living cell. Disturbances of this process may be either congenital or acquired. Congenital disorders of glycosylation (CDG) are a rapidly growing disease family, with about 50 disorders reported since its first clinical description in 1980. Most of the human diseases have been discovered recently. CDG result from defects in the synthesis of the N- and O-glycans moiety of glycoproteins, and in the attachment to the polypeptide chain of proteins. These defects have been found in the activation, presentation, and transport of sugar precursors, in the enzymes responsible for glycosylation, and in proteins that control the traffic of component. There are two main types of protein glycosylation: N-glycosylation and O-glycosylation. Most diseases are due to defects in the N-glycosylation pathway. For the sake of convenience, CDG were divided into 2 types, type I and II. CDG can affect nearly all organs and systems. The considerable variability of clinical features makes it difficult to recognize patients with CDG. Diagnosis can be made on the basis of abnormal glycosylation display. In this paper, an overview of CDG with a new nomenclature limited to the group of protein N-glycosylation disorders, clinical phenotype and diagnostic approach, have been presented. The location, reasons for defects, and the number of cases have been also described. This publication aims to draw attention to the possibility of occurrence of CDG in each multisystem disorder with an unknown origin.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.