Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  calcium deposit
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Roots of Gladiolus x hybridus Van Houtte plants infected with aster yellows phytoplasma were examined. The infected plants had a reduced root system in comparison to control plants. Their roots were thinner and the stele organisation was changed. Phytoplasmas were present in sieve tubes, companion cells and phloem parenchyma cells of the infected plant roots. Free calcium ions were localized in the cells of infected plants. Cells of the stele of infected roots, especially these infected with phytoplasmas, showed an increase of calcium antimonite deposits in theirs protoplasts. Also the number of calcium antimonite deposits increased in sieve tubes of infected roots. The deposits were present on plasma membrane, around the sieve tube plate and also in the lumen of the sieve tube. The increase of free calcium ions in sieve tubes did not cause the occlusion of sieve tube pores. Companion cells and some parenchyma cells with phytoplasmas did not react to phytoplasma infection with an increase of Ca2+ ions in protoplast. The parenchyma cells showing signs of degeneration reacted with high increase of calcium ions. The Ca2+ ions were present mainly in cytoplasm of infected parenchyma cells. There were calcium antimonite deposits in infected plant roots xylem elements and in intracellular spaces of cortex parenchyma. Such deposits were not present in control plants.
Intracranial physiological calcifications are unaccompanied by any evidence of disease and have no demonstrable pathological cause. They are often due to calcium and sometimes iron deposition in the blood vessels of different structures of the brain. Computed tomography (CT) is the most sensitive means of detection of these calcifications. The aim of this study was the assessment of intracranial physiological calcifications in adults. We studied 1569 cases ranging in age from 15 to 85 in Tabriz Imam Khomeini Hospital, Iran. These patients had a history of head trauma and their CT scan did not show any evidence of pathological findings. The structures evaluated consisted of (A) the pineal gland, (B) the choroid plexus, (C) the habenula, (D) the basal ganglia, (E) the tentorium cerebelli, sagittal sinus and falx cerebri, (F) vessels and (G) lens and other structures which could be calcified. Of the 1569 subjects, 71.0% had pineal calcification, 66.2% had choroid plexus calcification, 20.1% had habenular calcification, 7.3% had tentorium cerebelli, sagittal sinus or falx cerebri calcifications, 6.6% had vascular calcification, 0.8% had basal ganglia calcification and 0.9% had lens and other non-defined calcifications. In general, the frequency of intracranial physiological calcifications was greater in men than in women. All types of calcification increased at older ages except for lens and other non-defined calcifications. We evaluated all the cranial structures and determined percentages for all types of intracranial physiological calcification. These statistics can be used for comparing physiological and pathological intracranial calcifications. Moreover, these statistics may be of interest from the clinical perspective and are potentially of clinical use.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.