Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  aldosterone
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Neuroendocrine factors in salt appetite

84%
We dedicate this paper to Curt P. Richter, father of the study of salt appetite, who died recently at the age of 94. Richter first demonstrated that the adrenalectomized rat’s voracious appetite for salt kept it alive (1936) and showed the same in humans (1940). Our first paper in 1955 demonstrated that salt appetite was an innate response to salt depletion. Since then, we have pursued the notion that the neuroendocrine consequences of sodium depletion create a brain state that raises salt appetite. In Epstein’s laboratory, it was shown that angiotensin and aldosterone, the hormones of salt retention in the periphery, act synergistically in the brain to produce salt appetite in the rat. Block either hormone and the appetite is reduced by half; block both and the appetite is eliminated despite severe bodily need. With repeated depletions or treatments of the brain with angiotensin and aldosterone, salt ingestion increases, reaching an asymptote by the third depletion. Need-free intake of NaCI also increaes, especially in female rats which ingest more NaCI than male rats. In Stellar’s laboratory, running speed to salt solutions in a runway is used as a measure of salt appetite. When the appetite is raised with large doses of DOCA, a mimic of aldosterone, rats run rapidly for a taste of strong salt solutions as high as 24% (almost 4 molar). Using ingestion as a measure, the role of the atrial natriuretic peptide (ANP), an antagonist of angiotensin’s physiological effect, was investigated as a modulator of salt appetite. When angiotensin is involved is producing salt appetite, following sodium depletion by a diuretic combined with a low-salt diet, ANP reduced salt intake by 40%. When salt appetite was raised by DOCA, however, ANP either had no effect or reduced salt ingestion by only 10%. The subfornical organ, the lateral preoptic area, and the central and medial nuclei of the amygdala are being investigated as major components of the limbic circuit underlying salt appetite produced by the actions of angiotensin, aldosterone and ANP in the brain.
6
84%
Diabetes is associated with endothelial dysfunction and platelet activation, both of which contribute to increased cardiovascular risk. We investigated whether the selective mineralocorticoid receptor (MR) antagonist eplerenone improves endothelial dysfunction and reduces platelet activation in diabetic rats. Male Wistar-rats were injected with streptozotocin (50 mg/kg i.v.) to induce insulin-deficient diabetes. After 2 weeks, treatment with eplerenone (100 mg/kg/day) or vehicle was initiated for 2 weeks. Aortic superoxide production determined by lucigenin-enhanced chemiluminescence and 2-hydroxyethidium formation was significantly increased in rats with diabetes and reduced by treatment with eplerenone (chemiluminescence: control 2045±227, STZ-placebo 3977±340, p<0.05 vs. control, STZ-eplerenone 1762±307, p<0.05 vs. STZ-placebo). Endothelium-dependent vasorelaxation was significantly attenuated in diabetic rats and was normalized by eplerenone (maximum relaxation in % of precontraction: control 95±3, STZ-placebo 82±3, p<0.01 vs. control, STZ-eplerenone 99±1, p<0.01 vs. STZ-placebo). Treatment with the selective MR antagonist significantly reduced fibrinogen-binding on activated GPIIb/IIIa (immunofluorescence: control 161±7, STZ-placebo 208±16, p<0.05 vs. control, STZ-eplerenone 173±6, p<0.05 vs. STZ-placebo). Eplerenone improves endothelial function by reducing superoxide formation and increasing NO bioavailability in diabetic rats. Platelet activation was significantly reduced by eplerenone. Selective MR blockade may constitute a useful therapeutic approach for treatment of vascular dysfunction in diabetes.
Hypoxia is regarded as an important physiological factor that controls nephrogenesis. We investigated whether the renin-angiotensin-aldosterone system (RAAS) affects hypoxia-related target genes in developing kidneys. Newborn rat pups were treated with enalapril (30 mg/kg/d) or spironolactone (200 mg/kg/d) for 7 days. Tissue hypoxia was assessed by the uptake of a hypoxyprobe-1, pimonidazole (200 mg/kg), and the expression of hypoxia-responsive genes. In the enalapril group, hypoxia-inducible factor (HIF)-1, HIF-2, and Ets-1 protein expression were not changed, compared to the control group. In the spironolactone group, HIF-1 and Ets-1 protein expression were significantly increased by immunoblots and immunohistochemistry, whereas HIF-2 protein expression was not changed, compared to the control group. In the enalapril group, the immunoactivity of pimonidazole was not significantly different from that of the controls. However, in the spironolactone group, pimonidazole staining demonstrated that the cortex and medulla underwent severe hypoxia. In summary, our data showed that aldosterone inhibition in the developing kidney augmented the hypoxic responses, and up-regulated the expression of key mediators of hypoxia including HIF-1 and Ets-1. Angiotensin II inhibition did not affect hypoxia-related alterations in the developing kidney. The components of RAAS may differentially modulate renal hypoxia and its related target genes in the developing rat kidney.
Several factors, including mineralocorticoids, have been implicated in the renal damage associated with hypertension. Peroxisome proliferator activated receptor gamma (PPAR-) agonists improve renal damage associated with different pathologies. Therefore, our hypothesis was that mineralocorticoid receptor blockade ameliorates renal damage associated with hypertension and that this improvement may be mediated by PPAR-. Spontaneously hypertensive rats (SHR) were treated with either vehicle or eplerenone, a mineralocorticoid receptor antagonist, at two different doses: 30 and 100 mg/kg/day for 10 weeks. Age-matched Wistar Kyoto rats (WKY) were used as a normotensive reference group. SHR showed tubulointersticial fibrosis and mild tubular atrophy. These alterations were accompanied by increases in renal cortex gene expression of transforming growth factor beta (TGF-ß) connective tissue growth factor (CTGF) and phosphorylated Smad2 protein levels, factors involved in the fibrotic response. Interleukin 1-beta (IL-1ß) and tumor necrosis factor alpha (TNF-) gene expression were also increased. By contrast, lysyl oxidase (LOX) expression and PPAR- protein levels were decreased in SHR as compared with normotensive animals. Only the high dose of eplerenone was able to reduce blood pressure and partially prevent LOX down-regulation in SHR. Both eplerenone doses significantly ameliorated interstitial fibrosis and tubular atrophy, reduced TGF-ß, CTGF and cytokine gene expression, and decreased Smad2 activation, while normalizing PPAR- protein levels. Conclusions: Mineralocorticoid receptor activation participates in hypertension-associated renal damage. This effect seems to involve stimulation of both fibrotic and inflammatory processes mediated (at least in part) by a down-regulation of PPAR- that can favour an up-regulation of the TGF-ß/Smad signalling pathway.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.