Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 63

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Late Cretaceous
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Clusters of gastropod egg capsules, inferred to be of neritoids and attached to the inner shell wall of the ultimate whorl of a large volutid gastropod, are here recorded from the upper Nekum Member (Maastricht Formation; late Maastrichtian) of the ENCI−Heidelberg Cement Group quarry, St Pietersberg (Maastricht, southeast Netherlands). Because the aragonitic shell of the volutid has dissolved, the outlines of the egg capsules are now revealed on the steinkern of indurated biocalcarenite, having been subsequently overgrown by cheilostome bryozoan colonies and preserved as mould bioimmurations. This represents the first example of gastropod eggs preserved through bioimmuration, as well as the first record of gastropod eggs from the Cretaceous.
The Gobi Desert is famous for providing one of the worlds best preserved Cretaceous terrestrial faunas, including dinosaurs and mammals. Beginning with the Central Asiatic Expeditions in the 1920s, through the Polish−Mongolian Expeditions in the 1960s–1970s, Soviet−Mongolian Expeditions in 1970s, and finally the Mongolian Academy−American Museum Expeditions in the 1990s–2000s, the number of complete skulls (see Kielan−Jaworowska et al. 2000 for review) of Cretaceous mammals often associated with postcranial skeletons, found in Mongolia increased to several hundred. In addition to these professional expeditions, there have been other types of trips to Mongolia, also aimed at collecting fossils. The Nomadic Expeditions Company in USA organizes one of these, and has made trips to Mongolia since 1996. During the 1999 Nomadic Expedition, a skull associated with parts of the postcranial skeleton of the multituberculate mammal Catopsbaatar catopsaloides was found. The specimen is more complete than others previously known of this species and brings new data on multituberculate anatomy and ontogenetic variation. In this note we discuss the new data on the structure of C. catopsaloides; the details of its anatomy will be described in subsequent papers by the two first authors.
Palaeontological events, documented by widespread beds or thin intervals of strata with either unusual (“exotic”) or acmes of common faunal elements are a characteristic feature of Upper Cretaceous epicontinental shelf sediments in NW Europe. Their importance in stratigraphic calibration has early been recognized and these “bioevents” are widely used as correlation tools. Furthermore, it appears that there is a genetic link between sequence and event stratigraphy as most of the “classic” bioevents developed during specific intervals of a 3rd−order depositional sequence. Early transgressive bioevents (ETBs) are subdivided into two subtypes, i.e., the lag and migration subtype. The lag subtype corresponds to the transgressive surface and develops in response to winnowing and relative enrichment of robust biogenic hardparts. Taphonomic alteration and time−averaging are important features. The migration subtype is related to the disappearance of physical or ecological barriers that triggered faunal migrations. Despite their onlapping character, most ETBs are quasi−isochronous, and their preservation potential is usually high. Thus, they are very useful stratigraphic markers. Maximum flooding bioevents (MFBs) represent autochthonous biogenic concentrations with relatively low shell densities. They are related to habitat stability and ecospace expansion, and develop by population blooms of taxa well adapted to the special maximum flooding conditions of the wide epicontinental shelf of NW Europe (e.g., low food availability). Cenomanian MFBs of NW Europe are not time−averaged and may comprise stratigraphically more expanded intervals with gradational lower and upper boundaries. Their often wide palaeogeographic extent associated with very high chances of preservation results in an excellent inter−basinal correlation potential. Late highstand bioevents (LHBs) are local to regional shell concentrations deposited as a result of increasing winnowing of fines and reworking by storms, currents and waves during late highstands. LHBs usually consist of paucior even monospecific skeletal concentrations with a high degree of fragmentation. Simple shell beds related to a single (storm) event, and composite (multiple−event) shell beds are recognized. LHBs share some features of ETBs, but lack of time−averaging, are laterally restricted and have low preservation potential. Thus, their importance in interbasinal correlation is poor. The time scales of Cenomanian bioevents range through several orders of magnitude (hours–days in LHB storm event concentrations to ~100 kyr in MFBs). In terms of position within sequences, the three bioevent types correspond to shell concentrations recognized in Mesozoic–Cenozoic formations around the world. Shell beds with similar positions within cycles as well as comparable sedimentologic and taphonomic characteristics have also been described from high−frequency sequences and parasequences, suggesting that the formational processes of shell beds operate in base−level controlled sedimentary cycles of different hierarchies (i.e., 3rd−up to 7th−order).
The oldest known ceratopsians come from the Late Jurassic of China (Zhao et al. 1999; Xu et al. 2006). During the Early Cretaceous, the basal ceratopsian Psittacosaurus was among the most common dinosaurs in Asia but more derived basal neoceratopsians were quite rare on that continent (Xu et al. 2002; Makovicky and Norell 2006). Basal neoceratopsians became more abundant in the Late Cretaceous of Mongolia and China, although they are not known in this region from the latest Cretaceous (You and Dodson 2004; Alifanov 2008). In contrast, basal neoceratopsians are rare during the Early Cretaceous in North America but became common and diverse during the Campanian and Maastrichtian (You and Dodson 2004; Chinnery and Horner 2007). Little is known about the evolutionary history of this group in more inland regions of what are now Kazakhstan and adjoining countries. Asiaceratops documents the presence of basal neoceratopsians in the Cenomanian of Uzbekistan (Nessov et al. 1989). Here we report on the first record of a basal neoceratopsian in the Late Cretaceous of Kazakhstan, based on two cranial bones from the Turonian Zhirkindek Formation in the northeastern Aral Sea region.
Decapod crustaceans are the most diverse group of fossil invertebrates from the Upper Cretaceous Sahel Alma Lagerstätte (Lebanon, Middle East). They are mainly represented by abundant crest−bearing shrimps which were first described as Penaeus libanensis. We review this species applying the new systematic nomenclature and we propose a more complete description based on 54 unpublished specimens. This review leads to the erection of Palaeobenthesicymus gen. nov. and to the new combination Palaeobenthesicymus libanensis that is the oldest record of the family Benthesicymidae. A neotype is herein designated. Detailed comparisons with extant analogues suggest that the crest bearing shrimps inhabited relatively deep water settings most probably exceeding 150 m, at the transition between the lower circalittoral and the upper bathyal zones, under dysphotic or aphotic conditions.
The present paper focuses on the evolutionary dynamics of ammonites from sections along the Russian Pacific coast during the midand Late Cretaceous. Changes in ammonite diversity (i.e., disappearance [extinction or emigration], appearance [origination or immigration], and total number of species present) constitute the basis for the identification of the main bio−events. The regional diversity curve reflects all global mass extinctions, faunal turnovers, and radiations. In the case of the Pacific coastal regions, such bio−events (which are comparatively easily recognised and have been described in detail), rather than first or last appearance datums of index species, should be used for global correlation. This is because of the high degree of endemism and provinciality of Cretaceous macrofaunas from the Pacific region in general and of ammonites in particular.
South American Mesozoic snake diversity is mostly represented by genera from the Cenomanian (Najash), Santonian– Campanian (Dinilysia), and Campanian–Maastrichtian (Alamitophis, Patagoniophis, Rionegrophis, and Australophis) of Patagonia, Argentina. In this paper, we describe a new snake genus and species, Seismophis septentrionalis, from the Cenomanian (early Late Cretaceous) of the Alcântara Formation, Maranhão, northeastern Brazil. The new snake comprises a posteriormost trunk vertebra and possibly a poorly preserved midtrunk vertebra. Both vertebrae share small size, zygosphene moderately thick with a rectilinear roof, absence of paracotylar foramina, presence of parazygantral foramina, and strongly marked parasagittal ridges of the neural arch. The new snake is here considered of uncertain systematic affinities, but probably close to the limbed snake Najash rionegrina. Although the material is very fragmentary and the systematic assignment is still unresolved, this snake represents the oldest, as well as probably the most primitive snake from Brazil.
9
84%
Femora referable to metatherians and eutherians recovered from the Bissekty Formation, Dzharakuduk, Kyzylkum Desert, Uzbekistan (90 Mya), are described. Fourteen isolated specimens were sorted based on size and morphology into groups that likely correspond to the species level or higher. Groups were then tentatively assigned to taxa known from teeth, petrosals, and/or other postcrania at these localities. One distal femur of a small arboreal metatherian, and several eutherian distal femora that probably represent zhelestids and/or zalambdalestids were identified. With the exception of one proximal femur that is similar in some aspects to the zalambdalestid Barunlestes, and a previously described multituberculate specimen, all other proximal femora from the Bissekty Formation exhibit a metatherian−like morphology. The dental record currently suggests the presence of twelve eutherian species and only one metatherian at Dzharakuduk, whereas the humeral and crurotarsal evidence supports the presence of at least two or four metatherian species, respectively. Given the sample size of the proximal femora, the morphological diversity present, and the overwhelming presence of eutherians at these localities, it is highly unlikely that the overwhelming majority of proximal femora actually represent metatherians. Therefore, this sample may suggest that the metatherian proximal femoral condition is primitive for Theria and that some eutherian taxa (probably including Zhelestidae, which are dentally most abundant at these localities) retain this condition.
Uzbekbaatar Kielan−Jaworowska and Nessov, 1992 is among the rarest mammals and the only multituberculate in the diverse, eutherian dominated Bissekty (Turonian) and Aitym (?Coniacian) local faunas, Kyzylkum Desert, Uzbekistan. New material from the Bissekty local fauna, suggests that only one multituberculate species, Uzbekbaatar kizylkumensis Kielan−Jaworowska and Nessov, 1992 is present in the Bissekty fauna. A newly collected p4 is better preserved than the holotype and demonstrates presence of the posterolabial cusp in the p4 of Uzbekbaatar. New material of Uzbekbaatar is consistent with placement of this taxon within the basal cimolodontan “Paracimexomys group.”
Relationships of the specialized eutherian family Zalambdalestidae (Late Cretaceous, Asia) have long been debated. Beginning with suggestion of Van Valen (1964) and including the recent phylogenetic analysis of Archibald et al. (2001), a possible close relationship of Zalambdalestidae to Glires (Lagomorpha + Rodentia) has been repeatedly suggested (but see Meng and Wyss 2001). One of the characteristics of Glires is the structure of the lower incisor, which is enlarged and open−rooted. An open−rooted incisor has been documented in the oldest known zalambdalestid, Kulbeckia, but structure of this tooth has remained unknown for the Mongolian representatives of this family, Zalambdalestes and Barunlestes. Here we present evidence on the presence of an open−rooted first lower incisor in Zalambdalestes lechei and Barunlestes butleri; we argue, however, that structure of this incisor does not necessarily indicate relationship of Zalambdalestidae to Glires.
Polyglyphanodon sternbergi Gilmore, 1940 is a large−bodied lizard from the Late Cretaceous of North America distinguished by its transversely oriented, interlocking teeth. Initially the teeth of P. sternbergi were described as smooth and blade−like, but recent discoveries of new specimens from the type locality and re−examination of the original material indicate that the chisel−like teeth of P. sternbergi have small, irregular serrations along the blades. These serrations are similar in size to those found on the teeth of the modern herbivorous lizard Iguana iguana and were likely used in a similar manner to crop vegetation, but was also capable of a degree of oral food processing due to the transverse orientation and interlocking arrangement of the dentition of P. sternbergi. Additionally, the presence of transversely oriented teeth with V−shaped blades in the anterior portion of the tooth row of P. sternbergi represents an additional shared characteristic in tooth structure between P. sternbergi and Dicothodon moorensis, Bicuspidon numerosus, and Peneteius aquilonoius; all transversely−tooth polyglyphandontine lizards from the Cretaceous of North America. It appears that the unique dentitions of Polyglyphanodon sternbergi (large teeth with transverse, serrated blades) and Peneteius aquilonius (small teeth with mammal−like specializations) present by the end of the Cretaceous were derived from a bicuspid, transversely oriented precursor tooth with a V−shaped blade.
13
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Counting premolars in early eutherian mammals

84%
The primitive number of premolars for most eutherian groups is four. A growing number of Cretaceous taxa, however, had five. Regardless of the hypothesis used to explain the discrepancy, or what the primitive condition was, it is generally agreed that the middle (third) tooth of five-premolared taxa is the one not represented in mammals that have only four premolars. Hence the current practice of labeling the teeth as the first through fifth and the first through fourth, depending on how many teeth are observed in the jaw, results in incorrect implied homologies for the last two premolars of the series. Given the long-standing tradition of referring to the premolars as the first through fourth, for most eutherian groups, together with the uncertainties involved in interpreting the difference, the most practical solution is to refer to the disputed tooth by a neutral term, 'Px', as advocated several decades ago.
The middle part of the Cretaceous represents a time of high diversity and rapid rates of dental evolution in lamniform sharks. Several species had a very wide spatial distribution with recorded occurrences in both hemispheres. We have examined isolated teeth of Cretoxyrhina and Cardabiodon from eastern Russia, Mangyshlak in Kazakhstan, and the Western Interior of the USA. The material indicates that samples of isolated teeth of the two genera have high potential in intercontinental correlation of the upper Albian to mid−Turonian interval in mid−palaeolatitude deposits, poor in other age−diagnostic fossil groups. The utilization of these lamniforms in mid−Cretaceous biostratigraphy is currently hampered by the nearly total absence in the literature of well illustrated, well dated and sufficiently large samples of isolated teeth of the two genera. As a first step towards the establishment of an intercontinental elasmobranch zonation for mid−Cretaceous strata in temperate palaeo−regions, we describe and illustrate samples of teeth of Cardabiodon venator sp. nov. and Cretoxyrhina mantelli from the lower middle Turonian Collignoniceras woollgari regulare Zone in the Fairport Member of the Carlile Shale in east−central Montana, USA. These samples could serve as reference points for future biostratigraphic studies of Cretoxyrhina and Cardabiodon. The extinction of Cretoxyrhina may be diachronous, as regional last appearance data range from the upper Santonian (Marsupites testudinarius Zone) in Western Australia to the uppermost lower Campanian (informal Belemnellocamax mammillatus zone; a lateral equivalent to the German Gonioteuthis quadrata gracilis/Belemnitella mucronata Zone) in southern Sweden.
16
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Marsupials from the Late Cretaceous of Uzbekistan

84%
A fragment of dentary with m4, showing characters of some Late Cretaceous North American marsupials, is assigned to Marsasia sp. Marsasia Nessov, 1997 from the Coniacian of Uzbekistan, represented by M. aenigma known from edentulous dentaries with inflected angular processes, was attributed by Nessov to ?Marsupialia. Marsasia sp., found in the same horizon as the type species, resembles it in size and structure of the masseteric fossa, but dffiers in having a less steep coronoid process. We assign Marsasia to Marsupialia on the basis of the following characters: inflected angular process, shape of the dentary similar to that in Asiatherium, postcanine dental formula, inferred from alveoli for p1-3, ml-4, and sfructure of m4 more similar to Cretaceous marsupials than eutherians. The phylogenetic position of Marsasia may be between the Albian Kokopellia and Campanian Asiatherium. Marsasia is tentatively referred to the orderAsiadelphia, which may represent an endemic Asian marsupial clade.
Previously undescribed specimens of stagodontid marsupials from Late Cretaceous deposits in Alberta, Canada, reveal new information concerning the upper dentition of Eodelphisspp. and the lower dentition of Didelphodon coyi. Additionally, an incomplete upper dentition of D. coyi from the Scollard Formation extends the range of this species into the Lancian, co−eval with D. vorax and D. padanicus. Stagodontids are in accord with other North American Late Cretaceous marsupials for which the appropriate parts are known in lacking diastemata between the canines and the molars while possessing well−developed palatal vacuities, implying that these morphologies characterized ancestral marsupials. If so, the diastema between P1 and P2 in the Asian middle Early Cretaceous “metatherian” Sinodelphys szalayi is convergent on that in Cenozoic didelphids, and the absence of palatal vacuities in South American Paleogene and Neogene borhyaenids is derived, representing a paedomorphic truncation of development. Claims that the Asian Late Cretaceous “metatherian” Deltatheridium pretrituberculare had a marsupial−like dental replacement pattern are tautological, deduced from an a priori acceptance of a marsupial model of replacement to the exclusion of other, no less realistic, alternatives. The new specimens of Didelphodon coyi demonstrate that upper and lower premolars occluded broadly, implying that the inflated lingual lobes characteristic of Didelphodon premolars evolved primarily as a crushing mechanism, not for passive protection of the gums. Recent speculations that stagodontids were aquatic are not based on credible morphologic or taphonomic evidence and are dismissed, as is speculation that the Judithian species of Eodelphis are sexual morphs of a single species. Current knowledge of Didelphodon compels correction of numerous errors concerning its morphology as presented in recent analyses of marsupial relationships.
“Pediomyids” are a diverse group of smallto medium−sized marsupials which comprise a significant portion of many Late Cretaceous North American mammalian faunas. Known almost exclusively from isolated teeth and jaw fragments, “pediomyids” exhibit far more diversity than any other contemporaneous group of North American mammals. This has led some to suggest that the family “Pediomyidae” is an artificial, polyphyletic assemblage composed of multiple lineages that independently acquired various traditionally−recognized “pediomyid” molar characters, such as a reduction of the anterior stylar shelf, reduction of the stylocone and a labial shift in the attachment of the cristid obliqua. The present study seeks to elucidate the interrelationships of “pediomyid” marsupials and test the monophyly of the group using cladistic methodology, including a broad sampling of Late Cretaceous North American taxa and a comprehensive set of qualitative molar characters. Results suggest that the family “Pediomyidae” and the genus “Pediomys” are both polyphyletic and are in need of systematic revision. Iqualadelphis lactea (Aquilan) appears to be unrelated to the “pediomyid” radiation, and rests as a stem taxon near the base of the cladogram. The large Aquilan Aquiladelphis nests in a trichotomy with a strictly−defined “Pediomyidae” and the enigmatic Lancian taxon Glasbius, suggesting the possibility of a distant relationship (above the familial level). Three clades are recognized within the “Pediomyidae”: a restricted Pediomys, Leptalestes gen. nov. (containing the three smallest species), and Protolambda (containing the remaining three larger species). Results suggest that “Pediomys” exiguus is a stem taxon lacking a close relationship to Pediomyidae sensu stricto, and is removed to permit recognition of the family as monophyletic. The results carry implications for the role “pediomyids” might have played in the initial North American marsupial radiation sometime prior to the Campanian, and the pattern of molar evolution throughout major Late Cretaceous lineages.
Amurosaurus riabinini Bolotsky and Kurzanov, 1991 (Dinosauria, Hadrosauridae) is described on the basis of numerous disarticulated bones from the Maastrichtian Udurchukan Formation of Blagoveschensk, Far Eastern Russia. Comparisons with North American palynozones and their well−calibrated ages suggest that this formation is late Maastrichtian in age. It is shown that A. riabinini is a valid species, characterised by cranial and postcranial autapomorphies. A phylogenetic analysis, based on 40 cranial, dental, and postcranial characters, indicates that this taxon occupies a relatively basal position within the lambeosaurine subfamily as the sister−taxon of a monophyletic group formed by the parasauroloph and corythosaur clades. This cladogram also demonstrates that lambeosaurines have an Asian origin. In eastern Asia, lambeosaurine dinosaurs dominate late Maastrichtian dinosaur localities, whereas this group is apparently no longer represented in synchronous localities from western North America.
A Mongolian ankylosaurid specimen identified as Tarchia gigantea is an articulated skeleton including dorsal ribs, the sacrum, a nearly complete caudal series, and in situ osteoderms. The tail is the longest complete tail of any known ankylosaurid. Remarkably, the specimen is also the first Mongolian ankylosaurid that preserves impressions of the keratinous scales overlying the bony osteoderms. This specimen provides new information on the shape, texture, and ar− rangement of osteoderms. Large flat, keeled osteoderms are found over the pelvis, and osteoderms along the tail include large keeled osteoderms, elongate osteoderms lacking distinct apices, and medium−sized, oval osteoderms. The specimen differs in some respects from other Tarchia gigantea specimens, including the morphology of the neural spines of the tail club handle and several of the largest osteoderms.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.