Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Early Jurassic
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A new, relatively diverse gastropod fauna is reported from the Chubut province of west−central Patagonia. The gastropod association at the “El Córdoba” fossiliferous locality (Lower Toarcian of Osta Arena Formation) consists of three new species: the eucyclid Amberleya? espinosa sp. nov. and two procerithiids Cryptaulax damboreneae sp. nov. and Cryptaulax nulloi sp. nov. Other members of the association are the ataphrid Striatoconulus sp., discohelicid Colpomphalus? sp., and an undetermined zygopleurid. Knowledge on Early Jurassic gastropods from South America and other southern continents is reviewed to show that the taxonomic composition of the El Cordoba association strongly resembles other gastropod associations of this age (even those from Europe), suggesting a wide distribution of cosmopolitan genera.
Analysis of the internal structure carried out on several representative genera of the brachiopod family Zeilleriidae from the Lower Jurassic of the Betic Ranges (SE Spain), complemented with specimens from nearby domains such as the Iberian Range and Lusitanian Basin, has enabled to propose a model for discrimination of genera based on the relative position of the crural bases with respect to the hinge plates. This particular feature has been analysed in the genera Zeilleria, Bakonyithyris, Securina, Neozeilleria, Cincta, Aulacothyris, and Plesiothyris, revealing three different basic patterns of crural bases arrangement: a Zeilleria-type, with crural bases distinctly arising from the ventral side of the hinge plates; a Securina-type, with crural bases originating transversally to the hinge plates and dorsally prominent; and a Bakonyithyris-type, intermediate between both previous patterns.
Pseudoxyelocerus bascharagensis gen. et sp. nov., the oldest representative of the Tenthredinoidea and Xyelotomidae, based of a single forewing, and an enigmatic “Symphyta” family incertae sedis, based on a hindwing, are described from the Toarcian of Luxembourg. The relationships of the genera currently included in Xyelotomidae are briefly discussed. The genera Undatoma, Liaotoma, Leridatoma, and Davidsmithia have the unique apomorphy in the wing venation of the Tenthredinoidea minus Xyelotomidae. The Xyelotomidae is probably a paraphyletic family. Only a phylogenetic analysis will help to solve these problems. There is no evidence supporting the previous assignments of the fossil genera Vitimilarva and Kuengilarva to the family Xyelotomidae.
Predatory shell breakage is known to occur occasionally on the ventrolateral portion of the body chamber in Mesozoic ammonoids. Here we report, for the first time, quantitative data of shell breakage in large ammonoid samples that were recovered from the lower Toarcian (Lower Jurassic) strata in the Toyora area, western Japan. The strata yielding the ammonoid samples consisted mostly of well-laminated, bituminous black shale that was deposited in an oxygen-depleted shelf basin of the northwestern Panthalassa, under the influence of the early Toarcian oceanic anoxic event. Among a total of 1305 specimens from 18 localities, apparent shell breakage was recognised in 35 specimens belonging to 7 genera, resulting in only a 2.7% frequency of occurrence relative to the total number of specimens. The breakage occurs mostly on the ventrolateral side of the body chamber with a complete shell aperture. This fact, as well as the low energy bottom condition suggested for the ammonoid-bearing shale, indicate that the shell breaks observed in the examined ammonoids were not produced by non-biological, post-mortem biostratinomical processes but were lethal injuries inflicted by nek-tonic predators such as reptiles, jawed fishes, coleoids, nautiloids, and carnivorous ammonoids with calcified rostral tips in their upper and lower jaws. Similar predatory shell breaks on the ventrolateral side of the body chamber have been found in contemporaneous ammonoid assemblages of the Tethys Realm, with a much higher frequency of occurrence than in the examined samples from the northwestern Panthalassa, suggesting a weaker durophagous predation pressure on ammonoids in the latter bioprovince.
The fossil turtle Kayentachelys aprix is known from Early Jurassic sediments of the Kayenta Formation, Arizona, USA. The detailed description of this taxon’s cranium offered in this paper demonstrates that this turtle presents a mixture of primitive and derived character states. Among others, the presence of an interpterygoid vacuity, a basipterygoid process, a prootic that is exposed in ventral view, and a foramen posterius canalis carotici interni that is formed entirely by the basisphenoid are generally considered primitive for turtles. On the other hand, the presence of an undivided apertura narium, a well developed cavum tympani, an incipient cavum postoticum, and an unpaired vomer are considered to be derived. Kayentachelys aprix has previously been hypothesized to be the oldest stem cryptodiran turtle because of the presence of a flat, vertical plate on the processus pterygoideus externus, and the presence of a processus trochlearis oticum. However, the presence of these characters cannot be confirmed in the available specimens. Other putative stemcryptodiran characters, such as the prefrontal−vomer contact and the presence of an epipterygoid, are herein corroborated as being symplesiomorphies, because they generally appear to be present in basal turtles.
Complete plesiosaur skeletons are relatively abundant in the Lower Jurassic of England and Germany, but are exceptional in France. A new specimen from Normandy (northern France), including incomplete skull, palate and mandible with several associated vertebrae, is here described and its pliosauroid affinities are discussed. Comparison of this new specimen with other plesiosaurians indicates that it belongs to a new genus and species: Cryonectes neustriacus. This new plesiosaurian taxon represents one of the most complete pliosaurids reported from the Pliensbachian, a stage that has yielded very few diagnostic plesiosaurian remains. Our preliminary phylogenetic analysis places Cryonectes in a basal position among Pliosauridae, and suggests that the radiation of this clade occurred several millions of years earlier than previously thought. This new taxon contributes to our understanding of Early Jurassic plesiosaur diversity.
The Hettangian to earliest Sinemurian Vetigastropoda, Patellogastropoda, and Neritimorpha housed in the National Museum of Natural History of Luxembourg are studied. Most of the species comes from the Luxembourg Sandstone Formation. This deposit formed along the southern margin of the London−Brabant−Ardennes Landmass, in a region that during the earliest Jurassic constituted a seaway connecting the Paris Basin with the epicontinental seas of the Netherlands and northern Germany. The systematic analysis revealed high diversity of the studied fauna; we identified twenty−two species, eleven genera, nine families, and six superfamilies. A new genus, Meiersia gen. nov., and three new species, Anodomaria schroederi sp. nov., Meiersia disarmata sp. nov., and Spirocirrus weisi sp. nov. are described. The fauna is dominated by pleurotomarioideans representing the genera Ptychomphalus, Pleurotomaria, and Trochotoma, and by the patellogastropod genus Scurriopsis both in number of species and specimens. The neritimorph genus Neridomus is also well represented. Among the accessory taxa, Anodomaria and Spirocirrusfirst appeared in the Late Hettangian of the Luxembourg area. Most of these genera show a species radiation in the Early Jurassic and are distributed over the western European epicontinental shelf, probably favoured by an east to west marine transgression which influenced wide areas from the basins of the northern Germany to the Paris Basin through the Luxembourg seaway. The evolutionary and palaeobiogeographical data demonstrate that this radiation was already considerably advanced in the Late Hettangian. This suggests that the recovery of the gastropod diversity after the end−Triassic crisis was relatively fast in western Europe.
The anatomy of a basal sauropodomorph (Dinosauria: Saurischia) from the Early Jurassic Hanson Formation of Antarctica is described in detail. The material includes a distal left femur and an articulated right pes, including the astragalus, distal tarsals, and metatarsals I–IV. The material is referable to Sauropodomorpha and represents a noneusauropod, sauropodomorph more derived than the most basal members of Sauropodomorpha (e.g., Saturnalia, Thecodontosaurus, Efraasia, and Plateosaurus) based on a combination of plesiomorphic and derived character states. Several autapomorphies present in both the femur and metatarsus suggest that this material represents a distinct sauropodomorph taxon, herein named Glacialisaurus hammeri gen. et sp. nov. Some of the derived characters present in the Antarctic taxon suggest affinities with Coloradisaurus and Lufengosaurus (e.g., proximolateral flange on plantar surface of metatarsal II, well−developed facet on metatarsal II for articulation with medial distal tarsal, subtrapezoidal proximal surface of metatarsal III). Preliminary phylogenetic analyses suggest a close relationship between the new Antarctic taxon and Lufengosaurus from the Early Jurassic Lufeng Formation of China. However, the lack of robust support for the taxon’s phylogenetic position, and current debate in basal sauropodomorph phylogenetics limits phylogenetic and biogeographic inferences drawn from this analysis. The new taxon is important for establishing the Antarctic continent as part of the geographic distribution of sauropodomorph dinosaurs in the Early Jurassic, and recently recovered material from the Hanson Formation that may represent a true sauropod, lends support to the notion that the earliest sauropods coexisted with their basal sauropodomorph relatives for an extended period of time.
A new gastropod fauna is reported from Chubut province of west−central Patagonia. Members of Trochoidea, Pseudo− melanoidea, Campaniloidea, and Nerinoidea are recorded from the Early Jurassic (Late Pliensbachian–Early Toarcian) of Mulanguińeu Formation. The gastropod fauna consists of two new species: the pseudomelaniid Pseudomelania feruglioisp. nov. and the protorculid Anulifera chubutensissp. nov. Other members of the association are Pseudomelania sp.; the ampulloispirids Globularia cf. catanlilensis, Globularia sp., and Naricopsina? sp.; the nerineids Nerinea? sp. 1 and Nerinea? sp. 2; the trochids Lithotrochus humblodtii, Lithotrochus cf.rothi, and two indeterminable trochids species. An analysis of diversity was made considering all gastropod fauna recovered so far from five fossiliferous localities sampled in west−central Patagonia. The preliminary results of this study suggests that the Jurassic marine sequences of west central Chubut province are dominated by gastropods of Eucyclidae, Pseudomelaniidae, Procerithiidae, and Ampullinidae groups. However, the rarefaction curves of particular marine gastropod faunas in the Jurassic of Patagonia are still far from saturation requiring further collecting effort.
16
80%
We present results of the first studies of the bone microstructure of early mammals, based on the Early Jurassic Morganucodon, the Late Cretaceous multituberculates, Kryptobaatar and Nemegtbaatar, and the Late Cretaceous eutherians Zalambdalestes and Barunlestes. Our results show that the two eutherian taxa grew relatively slowly with periodic pauses in growth indicated by the presence of rest lines, while the multituberculates and Morganucodon had a faster rate of bone formation that suggests an overall rapid growth rate that slowed down later in ontogeny. Comparisons of the early mammalian bone microstructure with that of non−mammalian cynodonts, extant monotremes, and placentals are also made, and significant differences in the rate of osteogenesis in the various groups are documented. Our findings suggest differences in the growth rate between the multituberculates and the Mesozoic eutherians, and moreover, both groups appear to have slower growth rates as compared to modern monotremes and placentals. Our results further suggest that the determinate growth strategy typical of extant mammals evolved early in the evolution of the non−mammalian therapsids. We speculate that the sustained, uninterrupted bone formation among the multituberculates may have been an adaptive attribute prior to the K−T event, but that the flexible growth strategy of the early eutherians was more advantageous thereafter.
Hettangian to Pliensbachian neoselachian tooth assemblages from marine deposits in northwest Europe are dominated by palaeospinacids. In the Toarcian, elasmobranch faunas tend to be more diverse and several other neoselachian groups have their first occurrence. A small, but surprisingly diverse, neoselachian tooth assemblage, comprising seven taxa, has been extracted from Pliensbachian sediments within the Rya Formation in southern Sweden. The fauna includes five synechodontiform species; Synechodus occultidens, S. enniskilleni, 'Synechodus' sp., Paraorthacodus sp., and Sphenodus sp. The remaining two species include Hexanchidae indet. and Agaleus dorsetensis. The exclusively Early Jurassic A. dorsetensis is separated from all other neoselachians on the basis of tooth morphology and is here included in the new, monotypic family Agaleidae nov. The assemblage from the Rya Formation is the first selachian fauna to be recorded from the Jurassic of Sweden and it has a composition quite different from contemporary faunas found in other areas of Europe. The neoselachian part of the fauna is more diverse while hybodont sharks are represented solely by a single species.
Numerous tracks and trackways are preserved in the a cross−strata of the Lower Jurassic Navajo Sandstone of northern Arizona and southern Utah, USA. Tracks and trackways of small theropod dinosaurs are particularly abundant within one 10−m−thick interval. This paper describes a crouching trace from a theropod dinosaur that shows impressions of all four limbs, the ischial callosity, the tail, and tracks leading to and away from the crouching site, and revises the interpretation of a well preserved trackway hitherto referred to the synapsid ichnogenus Brasilichnium and here considered to be from a sauropodomorph dinosaur. It is named Navahopus coyoteensisisp. nov. on the basis of morphological differences from the type ichnospecies N. falcipollex. The ichnofamily Navahopodidae is revised to include Tetrasauropous unguiferus, Navahopus falcipollex, and N. coyoteensis.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.