Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 33

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Barents Sea
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Stratigraphic play based exploration approach facilitates the development of reservoir prediction models and prospect generation. The present study is carried out along the southern margin of the Loppa High within Hammerfest Basin, Barents Sea, Norway in order to identify the reservoir quality sand in Early Cretaceous age formations along the slope of the high. In this study 2D seismic lines; in which 8 lines are dip and 1 line is strike, and well logs data are interpreted. Outcome is a low-risk exploration technique that is capable of correctly predicting reservoir zones. The stratigraphic trap is identified in the Knurr and Kolje Formations of Adventdalen group, which act as source and seal rock for reservoir respectively. Three stratigraphic surfaces including base of Knurr Formation (sequence boundary), top of Knurr Formation, and Kolje Formation (maximum flooding surface) make a perfect trap for hydrocarbon accumulation. By utilizing the common risk segment analyses, it was identified that the maximum chances of hydrocarbon accumulation are in reservoir zone A and B which lies in up-dip direction.
An autochthonous community of benthic diatoms was discovered in June 2015 in the upper sediment layer at depths of 170, 205, and 245 m in the central Barents Sea. At least three benthic microalgae species (Gyrosigma fasciola, Pleurosigma angulatum, and Pleurosigma sp. 1) were detected in the sediment but not the upper water column. Analyses revealed that these benthic microalgae represent a depleted fragment of Arctic littoral microphytobenthos. Compared with the littoral flora, the deep-water assemblage is less diverse and displays low abundance. The data reported here challenge the generally accepted belief that the presence of certain microalgae at significant depths results from vertical or horizontal transfer.
High-latitude fjords, very vulnerable to global change, are impacted by their land and ocean boundaries, and they may be influenced by terrestrial water discharges and oceanic water inputs into them. This may be reflected by temporal and spatial patterns in concentrations of biogeochemically important constituents. This paper analyses information relating to the total suspended matter (TSM) concentration in the Porsanger fjord (Porsangerfjorden), which is situated in the coastal waters of the Barents Sea. Water samples and a set of physical data (water temperature, salinity, inherent optical properties) were obtained during two field expeditions in the spring and summer of 2014 and 2015. Bio-optical relationships were derived from these measurements, enabling optical data to be interpreted in terms of TSM concentrations. The results revealed significant temporal variability of TSM concentration, which was strongly influenced by precipitation, terrestrial water discharge and tidal phase. Spatial distribution of TSM concentration was related to the bathymetry of the fjord, dividing this basin into three subregions. TSM concentrations ranged from 0.72 to 0.132 g m−3 at the surface (0–2 m) and from 0.5 to 0.67 g m−3 at 40 m depth. The average mineral fraction was estimated to be 44% at surface and 53% at 40 m.
This paper discusses the role of glacial shelf topography in the formation of general oceanological and biological mechanisms in the Barents Sea. Analysis of geomorphological data and oceanographic observations obtained on board MMBI research vessels in 2001–08 has shown that: fluxes of Atlantic-origin waters pass along glacial troughs; the inflow of Atlantic waters to the Barents Sea from the west increased from 2001t ill 2007, although this advection began to weaken in 2008; vertical and horizontal thermohaline gradients intensified during the investigated period; a warm period similar to that of the 1930s was observed in the Barents Sea at the beginning of the 21st century.
Relationships between the zooplankton community andv arious environmental factors (salinity, temperature, sampling depth and bottom depth) were established in the European Arctic Marginal Ice Zone (MIZ) using multivariate statistics. Three main zooplankton communities were identified: an Atlantic Shallow Community (AtSC), an Arctic Shallow Community (ArSC) anda Deep Water Community (DWC). All species belonging to AtSC andArSC were pooledandtheir relative abundances in the total zooplankton calculated with respect to a particular layer (surface, midan dd eep strata), regions (the Barents Sea, Fram Strait andt he waters off northern Svalbard), years (1999 or 2003) and seasons (spring or autumn). Mapping of the proportions of Arctic andA tlantic species ledto the conclusion that zooplankton from the MIZs do not exactly follow complementary water masses, although the general pattern of AtSC and ArSC dominance accords with the physical oceanography of the study area (AtW and ArW respectively). The mid layer proved to be a better predictor of mesozooplankton distribution than the unstable conditions near the surface.
Shallow Arctic banks have been observed to harbour rich communities of epifaunal organisms, but have not been well-studied with respect to composition or function due to sampling challenges. In order to determine how these banks function in the Barents Sea ecosystem, we used a combination of video and trawl/dredge sampling at several locations on a heavily trawled bank, Tromsøflaket — located at the southwestern entrance to the Barents Sea. We describe components of the benthic community, and calculate secondary production of dominant epifaunal organisms. Forty-six epibenthic taxa were identified, and sponges were a significant part of the surveyed benthic communities. There were differences in diversity and production among areas, mainly related to the intensity of trawling activities. Gamma was the most diverse and productive area, with highest species abundance and biomass. Trawled areas had considerably lower species numbers, and significant differences in epifaunal abundance and biomass were found between all trawled and untrawled areas. Trawling seems to have an impact on the sponge communities: mean individual poriferan biomass was higher in untrawled areas, and, although poriferans were observed in areas subjected to more intensive trawling, they were at least five times less frequent than in untrawled areas.
15
84%
A primary production model for the Barents Sea shows a hot spot of organic carbon settlement to the sea bed over 100 km long, a shallow pile of highly permeable sediments (mainly large Balanus, Mya and Pecten shell fragments over 1 cm in size) of glacial origin. Hydrodynamic flow models suggest an intensive, deep flow of near-bottom waters into the sediment. Depending on wave height, water in shallow (30 m depth) places may percolate more than 5 m into the sediment. During 10 days of stormy weather as much as 4 to 8 kg wet weight pelagic biomass can be processed per square metre through this extremely permeable sediment. Analogous processes known in coastal waters lead to intense biocatalytic phenomena and metabolism of organic carbon within the seabed, estimated here as more intense than surface consumption. Spitsbergenbanken may be acting as a huge sink for organic carbon and an important source of nutrients in one of the most productive areas of the North Atlantic.
The article reports on the current state of the sipunculan fauna of the central and southern parts of the Barents Sea. The main quantitative parameters (biomass and abundance) of the sipunculan populations are obtained, and the contribution of sipunculids to the total benthos biomass is assessed. The major factors causing long-term variations in Sipunculidae distribution and abundance are evaluated for the area in question. The investigations show that the most commonly encountered sipunculan species are Nephasoma diaphanes diaphanes, N. abyssorum abyssorum and Phas- colion strombus strombus. The main contribution to the total benthos biomass comes from the two species most typical of the Barents Sea benthic fauna: Golfingia margaritacea margaritacea and G. vulgaris vulgaris. It is possible that the reduction in Golfingia biomass between the 1970s and 1990s, described in the article, is due to changes in the sampling methodology.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.