Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 33

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Alnus incana
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Processing of A. incana leaves was investigated in the Sucha Woda stream (High Tatra Mts, Poland). The leaf litter (about 1 g dry weight) was placed in plastic boxes with netting of three mesh sizes: fine (0.3 mm), medium (1 mm), and coarse (5 mm). Three replicates were collected from the water after 27, 55, 82, 111, and 139 days. The rate of breakdown was much higher for leaves from the coarse mesh boxes (0.014) than for those from the medium (0.0034) and fine (0.0025) mesh boxes.
The paper deals with the structural diversity and production of a less frequently studied type of alder stands originated on former agricultural lands in the 1950s, established partly by plantation and partly by natural succession in the area of the Krkonoše Mts. and the Orlické hory Mts. (Czech Republic). Four permanent research plots (PRP) were established at sites where Black alder (Alnus glutinosa L. Gaertn.) and Grey alder (Alnus incana L. Moench.) naturally occurs, each plot of 0.25 ha in size. The aim of the study was to evaluate the structure and development of the alder stands with respect to biodiversity, horizontal, vertical and species structure, diameter increment with emphasis on climate factors, and the quantity and quality of timber production. The results document low diversification of the studied stands in the PRPs. The horizontal structure is defined as random and clumped at sites at the highest altitude with high water table. The number of living trees with DBH ≥ 4 cm ranges between 556 to 828 trees ha-1 with the relative stand density index (SDI) 0.67–0.77. The stand volume ranges from 247 to 393 m3 ha–1, and decreases with higher altitudes. Low temperatures is limiting factor for radial growth in the high mountain areas, respectively low precipitation in the middle lands. Owing to a rather specific site character, as especially the spring area, the stands exhibit only average production, but the production quality is generally high. The quality timber is suitable for industrial use; the rot-affected trunk base parts usable for fuel represent only approximately 16%.
To assess the inter- and intrapopulation genetic variation in the filial generation (F1) of alder (Alnus glutinosa (L.) Gaertn.), 11 naturally regenerated populations were analysed. Their parental populations (P), represent the whole Polish territory and belong to three phytosociological associations with alder: typical alder swamp forest Carici elongatae-Alnetum (Ce-A); alder riparian forest Circaeo-Alnetum (C-A); and ash-elm riparian forest Fraxino-Ulmetum (F-U). F1 populations are grown in a common-garden experiment (provenance trial). Genotyping of individual trees has been carried out by analysis in a bud tissue allele frequency in the 21 isozyme putative loci of 10 enzymes. Differences between populations in respect to the level of genetic diversity were not high. Genetic diversity measured as the number of effective alleles per locus was the highest (Ne = 1.65) in population Wińsko originating from F-U (where also the inbreeding coefficient was the highest, F = 0.429), and the lowest (Ne = 1.48) in population Sławki from Ce-A. In all investigated populations, observed heterozygosity (Ho = 20%) was lower than expected from H-W equilibrium (He = 29%). The highest genetic variation expressed as percentage of polymorphic loci (77.3%) was observed in the offspring populations from Ce-A, and the smallest (69.9%) in the populations originating from F-U. It seems that the low genetic differentiation between populations is probably connected with long-distance seed dispersal via river systems. Alder seed can be transported over long distances thanks to periodical flooding. There is some gene flow between alder populations, with about 2.5 immigrants successfully entering a population per generation (Nm = 2.55). The level of population subdivision within A. glutinosa was low (Fst = 0.089). There was no significant genetic differentiation between populations from different phytosociological associations. Mantel test exhibited no significant correlation (r = 0.077) between genetic and geographic distance. In the dendrogram constructed according to Nei (1972) on the basis of interpopulation genetic distances, many small groups can be observed.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.