The enzyme dUTP pyrophosphatase (dUTPase, EC 3.6.1.23) is essential for cellular DNA replication and cell viability by virtue of its role in reducing the availability of dUTP as a substrate for DNA polymerases. Several members of the onco- and lentivirus families of retroviruses encode dUTPases and mutant strains of these viruses defective in this enzyme exhibit suboptimal replication kinetics. Among the lentiviruses there exists a surprising phylogenetic discontinuity in the distribution of dUTPase genes: non-primate viruses (EIAV, CAEV, FIV, visna) contain such genes whereas the primate viruses (HIVs, SIVs) do not The reason for this difference is unknown. We suggest the following explanation: (1) the nuclear and mitochondrial compartmentalization of the mammalian dUTPase, combined with the cytoplasmic location of ribonucleotide reductase, leads to the net synthesis of dUTP, together with dCTP, dGTP and dATP in the cytoplasm; (2) this combination of dNTPs serves as a "toxic cocktail" for viral replication by virtue of its ability to promote the synthesis of uracil-substituted DNA; (3) many viruses have adapted to this challenge by encoding dUTPases that are free of normal cellular regulatory constraints; and (4) the fortuitous expression of a dUTPase encoded by one or more human endogenous retroviruses (HERVs) has led to the evolutionary loss of the putative ancestral dUTPase gene of primate lentiviruses. Thus, we propose that efficient replication of HIV in humans depends upon expression of a dUTPase encoded by an endogenous retrovirus. If this proposal is correct, then the entry of HIV into target cells is necessary, but not sufficient, for replication of the virus in humans.