Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The distribution of pipistrelles of the Pipistrellus pipistrellus complex (= P. pipistrellus s.l.) reaches only marginally the African continent. These bats are known only from a narrow belt of the Mediterranean zone in Maghreb and from NE Libya. We analysed museum specimens of African populations of P. pipistrellus s.l. using both morphologic and genetic techniques and compared them with Eurasian specimens of the complex. The African representatives of P. pipistrellus complex include two morphologically, genetically and geographically distinct populations. One of them inhabits the Mediterranean part of Cyrenaica, Libya. Belonging to the P. pygmaeus genetic lineage, these bats are represented by larger and more rusty coloured individuals with large massive rostrum and canines. In morphologic traits, this population differs significantly from all Western Palaearctic populations of the P. pipistrellus complex. These bats differ by about 6–7% in genetic distance from P. pygmaeus s. str. Within the P. pygmaeus lineage Libyan bats seem to be unique in their echolocation calls: the maximum energy of terminal frequencies was recorded at about 45 kHz. We consider the Libyan pipistrelles to represent a separate species, Pipistrellus hanaki sp. nov. Another distinct African pipistrelle population inhabits the Mediterranean parts of NW African countries, Morocco, Algeria and Tunisia. Individuals from the latter population are small and somewhat darker members of the P. pipistrellus genetic lineage, with relatively short and narrow mesial part of rostrum. Although both morphological and genetic differences between this population and Eurasian P. pipistrellus s. str. were found (genetic distance about 3–5%), they are probably not sufficient for the separation of this form at the specific level. However, the differences from European samples show rather not a cline character and therefore potential subspecific level of NW African P. pipistrellus has to be taken into consideration.
We studied the impact of road E461, Brno-Vienna, on bat mortality, with the goal to predict this impact after the road has been reconstructed and turned into highway, R52. In the Czech territory, two proposed road sections of E461 were selected, 3.5 and 4.5 km long, and divided into segments 100 m in length. Bat carcasses were picked up from emergency stopping lanes, and bat activity was recorded by ultrasound detectors along the road and 100 m away on both sides from the central strip. From May to October 2007, 25 checks of bat mortality performed at weekly intervals revealed 119 bat carcasses representing 11 or 12 species.Pipistrellus nathusii, P. pygmaeus andMyotis daubentonii were the most frequent traffic casualties. The greatest mortality was documented from early July to mid-October, with a peak in September. Monitoring bat activity by ultrasound detectors (one night per month in May, June and September) yielded 12 bat species and 3 species couples (Myotis mystacinus/brandtii, M. emarginatus/alcathoe, Plecotus auritus/austriacus), mostly the same taxa as found dead on the road. Significantly greater bat numbers were revealed in the section where the road was situated between two artificial lakes, as compared to a road section without any lakes directly adjacent to the road. In the former section, significant correlation was found between the number of carcasses found and the activity detected, according to road segments.
Capture-recapture data on common voles Microtus arvalis (Pallas, 1779) in central Europe have been almost exclusively analysed by means of the enumeration technique (minimum number alive or calendar of catches). Here we compare enumeration and Jolly-Seber (JS) estimation of population size in the common vole using live-trapping data from an alfalfa field-population in southern Moravia, Czech Republic. Over the entire study the enumeration estimate of the population size was smaller by an average of 28% than the JS estimate. The negative bias increased with density, decreased with both capture probability and the survival rate, and was more pronounced in males at high density. We conclude that the method of direct enumeration is not reliable for estimating population size in the common vole.
Nitrogen deposition is generally considered as a main reason for many recent plant expansions, but management changes are often not taken into account. Understanding the effects of agriculture management in the past can be decisive in the explanation of plant expansions at present. In order to understand the spread of Molinia caerulea and Calamagrostis villosa into Nardus stricta dominated subalpine grassland in the Giant Mts. (Krkonoše, Karkonosze), we undertook an experiment to explain farmer decision making and we discussed its effect on grassland succession. We measured mowing productivity, yields, biomass quality and nutrient removal in N. stricta, M. caerulea, and C. villosa dominated swards. With regard to defoliation management performed on the subalpine grasslands for at least 500 years and cancelled after the Second World War, we found the following results and conclusions. 1. Mowing productivity, yield and forage quality were lowest in the N. stricta sward, therefore farmers preferred to harvest C. villosa and M. caerulea stands if they had the possibility to select a sward for mowing. 2. Removal of all nutrients was the lowest in the N. stricta sward. With respect to these facts, the competitive advantage of N. stricta is obvious under long-term scything without fertilization. Consequently, the recent increase of defoliation sensitive species M. caerulea and C. villosa above the timber line must be evaluated with respect to both: termination of agricultural activities and recent nitrogen deposition.
The origin of Nardus stricta dominated subalpine grassland (Nardo-Caricion rigidae alliance) is a frequently discussed topic in the Giant Mountains (Karkonosze in the Czech Republic). Many researchers considered them, as secondary stands arisen after Pinus mugo removal and by consequent oligotrophization of original plant communities, caused by long-term rough grazing and hay making activities without manuring. On the contrary, they are recognized as natural due to inability of generative reproduction of N. stricta and the very slow vegetative spread there. The aim of this study was to find proofs for generative reproduction of mat grass in subalpine conditions of the Giant Mountains. We identified a Pinus mugo nursery with arable land abandoned in 1956 and compared its vegetation with that of the surrounding area. Dense and homogenous sward dominated by N. stricta developed during the succession on the old arable land for 48 years, and it is an indisputable proof of generative reproduction of N. stricta there. Synthesizing historical facts on human activities in the past and the results of our contemporary vegetation analysis, we conclude that the Nardo-Caricion rigidae grassland was capable to spread relatively quickly, when agricultural activities above the upper timber line were introduced.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.