Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 35

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of the research was to estimate the sensitivity of tomato tissue and spore from necrotrophic isolate of B. cinerea on H2O2. The influence of exogenic H2O2 and B. cinerea on plant tissue and on the activity of peroxidases (PO), catalase (CAT) and superoxide dismutase (SOD) in apoplastic tomato leaves fraction were investigated. It was proved that 40 mM H2O2 damaged the cells of a host, and inhibited in vitro germination of B. cinerea spores. Complete inhibition of germination was observed after the use 100 mM H2O2. In the presence of spores H2O2 was decomposed to H2O and O2. Trace activity of catalase was observed in a solution of spores used for inoculation. Necrosis which appeared on the leaves after 40 mM H2O2 treatment resembled hypersensitive response. On the leaves pretreated at this concentration the development of infection was observed. The H2O2 concentration harmful for the tissues, stimulated the PO activity measured with NADH - responsible for generation of ˙O₂⁻, as well as with syringaldazine (S) and ferulic acid (FA), substrates characteristic of forms lignifying and strengthening the cell wall. Clear increase in CAT activity, resulting from infection and early pretreatment with H2O2 was obterved in apoplast. No effect on SOD activity was observed. A hypothesis may be put forward, that germinating spores produce enzymes which allow them to decompose H2O2 generated in apoplast, so there is little likelihood that B. cinerea can be directly inhibited by reactive oxygen forms (ROS) during initial stages of infection. Necrotic lesions resembling HR generated by exogenous H2O2 as well as induction of activity of apoplastic plant enzymes, particularly PO connected with strengthening and lignification of cell wall, were not sufficient factors to inhibit fungal expansion.
Germination responses of Galium cracoviense Ehrend. (Rubiaceae), a narrow endemic species from southern Poland, were tested in light and dark conditions at three constant temperatures (5, 10, or 22°C), before and after cold-wet stratification. Additionally, seeds were germinated under different calcium carbonate (CaCO3) concentrations (1, 5, 10, 15, 20, or 25 mM/L CaCO3) at 22°C in light. The high germination capacity of seeds incubated at different temperatures, shortly after collection, already suggested the absence of dormancy in this species. Thus, the seeds are ready to germinate immediately in the field when water resources are available and the temperature is adequate. Light was a significant factor for G. cracoviense; more seeds germinated in light than in darkness at all temperatures tested. Cold stratification decreased germination especially at higher temperatures. The light requirement for G. cracoviense germination ensures their successful germination on or near the soil surface, and in cracks and crevices in limestone, when temperature and edaphic conditions are favourable. Seeds of this species show temperature enforced dormancy throughout the winter. Germination was significantly affected by calcium carbonate. Non-germinated seeds germinated well after being transferred from higher CaCO3 concentrations to distilled water. The results indicate that the seeds of this species can endure CaCO3 stress without losing their viability and start germination once CaCO3 concentration is reduced. It can be concluded that the seeds of this species require lower Ca2+ ion concentration, moderate temperatures and the presence of light to germinate.
Phaseolus vulgaris cv. Korona plants were inoculated with the bacteria Pseudomonas syringae pv. phaseolicola (Psp), necrotrophic fungus Botrytis cinerea (Bc) or with both pathogens sequentially. The aim of the experiment was to determine how plants cope with multiple infection with pathogens having different attack strategy. Possible suppression of the non-specific infection with the necrotrophic fungus Bc by earlier Psp inoculation was examined. Concentration of reactive oxygen species (ROS), such as superoxide anion (O₂⁻) and H₂O₂ and activities of antioxidant enzymes such as superoxide dismutase SOD), catalase (CAT) and peroxidase (POD) were determined 6, 12, 24 and 48 h after inoculation. The measurements were done for ROS cytosolic fraction and enzymatic cytosolic or apoplastic fraction. Infection with Psp caused significant increase in ROS levels since thebeginning of experiment. Activity of the apoplastic enzymes also increased remarkably at the beginning of experiment in contrast to the cytosolic ones. Cytosolic SOD and guaiacol peroxidase (GPOD) activities achieved the maximum values 48 h after treatment. Additional forms of the examined enzymes after specific Psp infection were identified; however, they were not present after single Bc inoculation. Subsequent Bc infection resulted only in changes of H₂O₂ and SOD that occurred to be especially important during plant–pathogen interaction. Cultivar Korona of common bean is considered to be resistant to Psp and mobilises its system upon infection with these bacteria. We put forward a hypothesis that the extent of defence reaction was so great that subsequent infection did not trigger significant additional response.
In the present study we investigated the seasonal pattern of activity of antioxidant enzymes such as superoxide dismutase (SOD) catalase (CAT) ascorbate peroxidase (APX), guaiacol peroxidase (POD) and syringaldazine peroxidase (SPOD) as well as the total protein concentration in the European mistletoe (Viscum album L. subsp. album). We studied mistletoe leaves that grew on the selected tree species in different parts the city of Lodz, exposed to a greater or lesser extent to the nitrogen dioxide. Sampling campaigns were conducted during the growing season 2013 in early May (at the beginning of the growing season) and in November (at the end of the growing season). We showed considerable seasonal variations of antioxidant enzymatic activity and total protein concentrations for all the samples studied. The test parameters varied depending on the host plants exposition to pollution with nitrogen dioxide. The changes in enzymatic activity did not depend on the host plants. In mistletoe leaves greater changes of SOD activity and total protein concentration were observed in autumn. There is correlation between the level of nitrogen dioxide in atmosphere and activities the enzymes. SOD activity was signifi cantly higher in autumn when the host plants were defoliated. Increased CAT activity was observed in late spring. We demonstrated the positive correlation between changes in enzyme activities and the progress of growing season. Increased activities of POD, CAT and APX to a limited extent depended on the place of growing and exposition to air pollution. In late spring activity of the enzymes did not signifi cant grow because of the protective umbrella from host plant leaves preventing the access of nitrogen dioxide to mistletoe. The higher SOD activity in mistletoe is a consequence of oxidative stress causes by nitrogen dioxides evidently observed in the city center. The test parameters, mainly the activity of SOD, can be used in the future as markers of the environment purity, especially in the autumn and winter when the temperatures are above freezing, and there are no leaves on the trees.
The aim of the present studies was to compare H2O2 and ascorbate conients as well as peroxidase (PO) and catalase (CAT) activities in leaves of less susceptible cultivar Perkoz and more susceptible Corindo after B. cinerea infection. Increase in H2O2 contents in both Perkoz and Corindo cytosol was observed, however, it appeared earlier in the less susceptible cultivar. The increase in PO activity in the cytosol fraction was observed 48 hours after infection in both cultivars but it was greater in the less susceptible Perkoz. No significant differences between the tested cultivars were observed in asi corbate peroxidase (APX) activity and in reduced and oxidated ascorbate contents. PO activity was thoroughly analyzed in the apoplast fraction. It was measured with syringaldazine (S), tetramethylbenzidine (TMB) and ferulic acid (FA) - substrates characteristic of isoenzymes involved in lignification and stiffening of a cell wall. Increase in PO activity with these substrates was observed earlier in cultivar Perkoz than in cultivar Corindo. Similarly, increase in PO activity with NADH appeared significantly earlier in cultivar Perkoz. Apoplastic PO was separated with DEAE Sepharose and two fractions binding and non-binding were obtained. Binding PO fraction was significantly more active especially with S, TMB and NADH after B. cinerea infection. The increase in the enzyme activity was mostly observed in cultivar Perkoz. Binding PO was separated by electrophoresis on acrylamide gel and revealed six enzymatic forms from which three were much more active after infection in cultivar Perkoz. The obtained results suggest that cell wall strengthening mediated by apoplast PO is a key factor responsible for different resistance of tomato cultivars Perkoz and Corindo to B. cinerea infection.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.