Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 27

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
PsbO, the manganese-stabilizing protein, plays a crucial role in oxygen-evolving complex functioning and stabilization, by maintaining optimal manganese, calcium and chloride concentrations at the active state of PSII. In this paper we present a study focused on recognizing the relationship between psbO gene activity and acclimation of the photosynthetic apparatus under abiotic stresses in the grasses Festuca arundinacea and F. pratensis. PsbO expression was compared between two distinct genotypes within each species which differed in their levels of stress tolerance (drought and frost, respectively) during drought treatment (F. arundinacea) and cold acclimation (F. pratensis). The research involved: (1) the analyses of psbO gene expression profiles using real-time PCR, and (2) the analyses of PsbO protein accumulation profiles using protein gel blot hybridization. The results indicate that PsbO plays a protective function with respect to the photosynthetic apparatus during abiotic stresses. In cold-treated F. pratensis plants the accumulation of PsbO seems to be responsible for differences in the PSII photochemical efficiency. Higher stability of PSII during drought, observed in the high-drought tolerant F. arundinacea genotype, is not associated with PsbO accumulation, although the degradation of this protein affects destabilization of the oxygen-evolving complex in drought.
At present, breeding programmes aimed at combining advantageous traits within the Lolium-Festuca complex, are mainly focused on introgression procedures. One principal objective, is the transfer of genes conferring resistance to abiotic stresses from Festuca species (F. pratensis, F. arundinacea and F. glaucescens) into Lolium multiflorum and L. perenne germplasm. In our experiments, two different hybrids: triploid - L. multiflorum (4x) x F. pratensis (2x) and pentaploid - F. arundinacea (6x) x L. multiflorum (4x) were backcrossed twice onto L. multiflorum cultivars, and numerous BC2 progeny generated. BC2 plants from both combinations were tested in field and/or simulated conditions for winter hardiness and drought resistance. GISH (genomic in situ hybridisation) analyses were then performed on the most winter hardy and drought resistant plants to locate putative genes for stress resistance. Using resistant L. multiflorum genotypes with a single Festuca chromatin segment, it was possible to allocate AFLP (amplified fragment length polymorphism) markers specific to that segment. Markers associated with genes conferring stress resistance facilitate marker-assisted selection programmes to obtain new, more persistent grass cultivars. Preliminary results of GISH analysis, to identify Festuca chromosome segments in L. multiflorum introgression lines and to find segment-specific AFLP markers, are presented.
Germination is the first step of plant growth in plant life cycle. An embryonic radicle protruding the seed coat is the first part of plant which has direct contact with external environment including salt-affected soil. In embryo axes, mitochondria are the main energy producer. To understand better salinity impact on mitochondria functioning, this study was focused on the effect of NaCl stress onto mitochondria proteome. Mitochondria were isolated from yellow lupine (Lupine luteus L. ‘Mister’) embryo axes cultured in vitro for 12 h with 250 and 500 mM NaCl. Two-dimensional gel electrophoresis of mitochondrial proteins isolated from NaCl-treated axes demonstrated significant changes in proteins abundances as a response to salinity treatment. Twenty-one spots showing significant changes in protein expression profiles both under 250 and 500 mM NaCl treatment were selected for tandem mass spectrometry identification. This approach revealed proteins associated with different metabolic processes that represent enzymes of tricarboxylic acid cycle, mitochondrial electron transport chain, enzymes and proteins involved in mitochondria biogenesis and stresses response. Among proteins involved in mitochondria biogenesis, mitochondrial import inner membrane translocase, subunit Tim17/22, mitochondrial-processing peptidase subunit alpha-1, mitochondrial elongation factor Tu and chaperonins CPN60 were revealed. Finally, formate dehydrogenase 1 was found to accumulate in lupine embryo axes mitochondria under salinity. The functions of identified proteins are discussed in relation to salinity stress response, including salinity-induced PCD.
Significant differences in the two-dimensional electrophoresis patterns of proteins from developing rye grain were found to be associated with resistance and susceptibility to preharvest sprouting (PHS). Mass spectrometry of individual spots showing different abundance in PHS-resistant and PHS-susceptible lines identified proteins involved in: reaction to biotic and abiotic stresses, including oxidative stress, energy metabolism and regulation of gene expression. Highly differentiated abundance of proteins found in developing grain suggest that the diversification of processes leading to developing PHS resistance or PHS susceptibility starts from an early stage of grain development. A part of the identified proteins in rye grain were also reported to be associated with PHS in wheat and rice, which suggests that some mechanisms affecting precocious germination might be common for different cereal species.
Genomic in situ hybridisation (GISH) was used to reveal chromosome pairing in two partly fertile, triploid (2n = 3x = 21) hybrids obtained by crossing the diploid (2n = 2x = 14) Festuca pratensis Huds. (designated FpFp), used as a female parent, with the autotetraploid (2n = 4x = 28) Lolium multiflorum Lam. (designated LmLmLmLm), used as a male parent. The pattern of chromosome pairing calculated on the basis of the mean values of chromosome configurations identified in all 100 PMCs analysed, was: 0.71I Lm + 2.24I Fp + 2.18II Lm/Lm + 0.54II Lm/Fp + 4.18III Lm/Lm/Fp. A relatively high number of Lm/Lm bivalents and Fp univalents, and a low number of Lm/Fp bivalents and Lm univalents indicated that the pairing was preferential between L. multiflorum chromosomes. Other observations regarding chromosome pairing within the Lm/Lm/Fp trivalents also confirmed this preferential pairing in the analysed triploids, as the Fp chromosome was not randomly located in the chain- and frying-pan-shaped trivalents. The similarities and differences in chromosome pairing at metaphase I and the level of preferential pairing between Lolium chromosomes in the different triploid Lolium-Festuca hybrids are discussed.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.