Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 27

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Axial homodromy in growing shoots of perennial plants with spiral phyllotaxis is the case when the chirality of phyllotactic pattern does not change in consecutive growth increments of the same axis. In conifers such as Picea or Abies this rule is strictly observed, except for the rare cases of discontinuous phyllotactic transitions. In Torreya, however, the chirality changes, at random, every year. The pattern of primordia packing, executed by vegetative shoot apical meristem (SAM), depends in Torreya on their identity. The primordia of bud scales are initiated in the decussate and those of needles in bijugate spiral pattern. The decussate, achiral i.e. neutral pattern always precedes the formation of new spiral pattern and thus facilitates random selection of its chiral configuration. Periodic change in organ identity cannot itself be responsible for the special behavior of Torreya, because in other conifers it also exists. There is, however, one important difference: in Torreya, when the initiation of bud scales begins at SAM, the distance between differentiated protoxylem and the initiation site gradually increases, while in other conifers it remains constant and small. In Torreya, at this phase of development, the rate of xylem differentiation and the rate of organogenesis become uncoupled. Closer anatomical examination shows that the decussate pattern in a bud scale zone develops slowly suggesting gradual decrease of the putative signal flowing acropetally from differentiated protoxylem, responsible for positioning of primordia. We hypothesize that in the absence of this signal SAM starts acting autonomously, distributing primordia according to their identity only. A constant presence of the signal in other conifers assures the continuation of the same phyllotactic pattern throughout the period of bud scale formation, despite the change in organ identity.
11
63%
Cambial rays, give rise to phloem and xylem rays. This way they affect the efficiency of a radial conducting system in a tree. Both, frequency of rays and their arrangement on the expanding cambial surface must be precisely controlled during tree ontogeny. The main aim of this research was to analyse the changes in the ray arrangement of Diospyros lotus L. cambium during transition from its nonstoried to double–storied structure. In order to trace the history of cambial ray dynamics, the behaviour of wood rays was followed in successive annual rings. Special attention was paid to developmental events, such as initiation and elimination of rays as well as their splitting and uniting. Moreover, the additions and eliminations of ray cell initials at the both opposite ray margins were followed. The most evident was the initial split of high primary rays into the smaller parts and their subsequent separation concurrent with the increase in cambial girth during the first years of a tree ontogeny. Between the existing rays new secondary rays were initiated by segmentation of fusiform initials. These all developmental events led to the formation of a double-storied pattern. In addition, the recurrent uniting and splitting of rays indicated their permanent rearrangement and the dynamic maintenance of a general pattern. The presented data are discussed in light of the processes occurring in cambial rays that lead to the storied pattern formation, which in turn may affect the mechanical properties of the wood.
The ratio of primordium size to the meristem size (P/M ratio) is regarded by some geometrical models of phyllotaxis as the parameter, which determines the quality of spiral and whorled patterns of lateral organ arrangement. This assumption was tested on floral meristems in four genets representing four Magnolia taxa: M. × salicifolia, M. stellata, M. denudata and M. acuminata. In successive zones of Magnolia flower, lateral organs are initiated in specific phyllotactic patterns and at specific values of the meristem and primordia sizes. The elements of perianth, usually positioned in three trimerous whorls, are initiated as large primordia on relatively small meristem. The switch in the identity of primordia, from tepals to stamens is accompanied by an abrupt increase in the size of the meristem and decrease in the primordia size. Small values of P/M ratio and frequent occurrence of qualitative transformations of phyllotaxis contribute to the exceptionally rich spectrum of spiral patterns in androecium zone. New spiral patterns emerge when bigger primordia of carpels are initiated on the meristem, which at the same time starts diminishing in size either abruptly (M. × salicifolia, M. stellata, M. acuminata) or slowly (M. denudata). Spiral patterns identified in gynoecia have lower numbers of parastichies than the patterns of androecia and occur in frequencies specific for the genet. Although noted ranges of the meristem and primordia sizes, justify the occurrence of phyllotactic patterns observed in successive zones of Magnolia flower, they do not explain genet-specific frequencies of the patterns observed in gynoecium zone. The lack of straightforward relationship between frequency of the patterns and P/M ratio in gynoecium suggests that more complex geometrical factors or factors of non-geometrical nature are engaged in determination of Magnolia floral phyllotaxis.
The presence of symplasmic isolation and symplasmic continuity which are functional aspects of cell-to-cell communication, had been studied in cambium of Acer pseudoplatanus and Ulmus minor, with hope that uniqueness of this meristem, exemplified by its morphology and seasonal variations in its activity is also manifested in differences in the efficiency of communication between cambial cells during the year. The degree of symplasmic continuity was estimated by loading the fluorescent symplasmic tracer to the stem and following its distribution in a population of cambial cells observed on tangential, transverse and radial sections. In active cambium the tracer did not enter the rays. This suggested that the ray and fusiform cells, growing and dividing intensively at different rates were specifically isolated from each other. In the state of dormancy the tracer was present also in the rays implying continuity between the two types of cambial cells. Temporal restriction in tracer spreading from secondary xylem to cambial region was observed on transverse sections in both physiological states of the meristem. Higher degree of symplasmic isolation in active cambium is, most probably, associated with functional distinctiveness of ray and fusiform cells. We hypothesize further that the symplasmic continuity in dormant cambium results from the open conformation states of plasmodesmata, because the energy costs of these states are low. It is reasonable strategy when cambial cells do not divide and maintenance of their functional individuality is not necessary.
The theoretical analysis of the consequences of the phyllotactic pattern being propagated according to the first available space rule has revealed that all monojugate patterns, with the exception of the main Fibonacci pattern, should become developmentally unstable in their low expressions. This fact explains why the main Fibonacci pattern plays the dominant role among other patterns of spiral phyllotaxis. The probability that the pattern becomes unstable varies for different patterns, which likely makes them more or less frequent, and thus easier or more difficult to encounter in nature. The unstable pattern inevitably transforms into another, as the computer simulations show. Theoretically predicted instability of low order phyllotaxis may be treated as one of the causes of natural ontogenetic transitions, occurring in plants. This, however, still does not explain why in nature some patterns with high order of phyllotaxis also change, quite readily one into the other, in shoot apical meristem’s ontogeny.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.