Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Leguminous species, Piptadenia moniliformes (Benth.) and Trischidium molle (Benth.) H. E. Ireland, both prevalent in the Caatinga vegetation, were submitted to varying watering regimes under greenhouse conditions. In experiment I, 60-day-old P. moniliformes plants were maintained under suspended irrigation for 12 days. Assessment on day 12 of drought revealed that leaf relative water content decreased to 40% and stomatal conductance and transpiration were also strongly diminished. Apparent electron transport rate (ETR) and photochemical quenching (qP) values were reduced by water deficit treatment compared to controls, while non-photochemical quenching (NPQ) increased; however, the basal values were recovered in moisturized plants when analyzed after 48 h of rewatering. In experiment II, T. molle plants were watered once (1 ×), 3 (3 ×) or 5 times (5 ×) per week, up to day 65 after emergence. Chlorophyll a, chlorophyll b and carotenoid contents were reduced in the 3 × and 5 × watering treatments. Photosystem II maximum efficiency (Fv'/Fm'), ETR and qP values strongly decreased when drainage frequency and NPQ values were increased. Observation verified that chlorophyll fluorescence is a suitable tool for evaluating the developmental characteristics of the arboreal leguminous species studied. Analysis of the data obtained suggest that plant tolerance to the dry climate conditions of the Caatinga ecosystem is directly associated with fast physiological adaptation to water deficit, by accumulating biomass in the root system in detriment to the shoots. The data presented contribute to further understanding the developmental and physiological mechanisms that enable plant adaptation to dry climates and, particularly, to the unique dry environmental conditions of the Caatinga region.
The Brazilian Atlantic Forest has experienced a reduction in its original area since the discovery of Brazil. Over the last 30 years, studies and techniques for forest recovery have advanced. Establishing a self-sustainable reforested area with adequate biodiversity is the main parameter for any reforestation program. Thus, knowledge of the ecophysiological behavior of the species to be used is crucial. Our hypothesis is that certain tools are efficient in determining the ecophysiological characterization of native species within different functional groups. Filling group plants show fast growth, intense gas exchange, present mechanisms of water deficit tolerance and show high efficiency in radiation capture, so they are first planted in a reforestation area. While plants pertaining to the diversity group do not exhibit these characteristics, thus are plants after the establishment of the first group of species. To test this hypothesis, two experiments were installed using young plants of four species native to the Atlantic Forest, grown in 9-L pots. Leaf water potential, gas exchange, chlorophyll fluorescence and certain biochemical parameters of leaf metabolism were evaluated. In the first experiment, plants were maintained under two forms of light availability for 15 days, full light (control) and shaded (shade). The species Inga sp. and Brosimum guianensis presented the most contrasting responses on day 15, principally in the variables leaf water potential, gas exchange, leaf soluble sugar content, F'v=F'm and Fv/Fm. In the second experiment, plants were divided into two groups: a well-hydrated group (control) and one that underwent irrigation suspension for 7 days (drought); measurements were performed on day 8 of drought. Again, Inga sp. and Brosimum guianensis plants showed responses characterizing them as pertaining to distinct functional groups for the experimental parameters previously described. Thus, Inga sp. was classified as pertaining to the filling group and B. guianensis to the diversity group. The performance of the species Cinnamomum zeylancium and Tapirira guianensis under the conditions studied suggests that these are intermediate species with potential for use as filling group species.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.