Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of the paper is to enter into a discussion concerning the title question. In our opinion it is N uptake efficiency that affects N uptake, but not vice versa, mainly because the former is a genotypic characteristic, and as such is not influenced by N uptake. To support the conclusions we also show a similarity between the model used for the problem in question and a yield component model.
Good reviews have been published over the years regarding many aspects of plant response to light, such as important advances in understanding the molecular mechanisms of light perception, signaling and control of gene expression by the photoreceptors. Moreover, many efforts have been undertaken on the manipulation of these mechanisms to improve horticultural crop production. In this paper we present an overview about the photoreceptors, the relationship between their absorptive and reflective properties and their control of plant development as well perspectives focused on photomorphogenesis manipulation.
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosateresistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.
The most abundant form in which phosphorus occurs in seeds is phytate (myo-inositol hexakisphosphate), mostly known as an antinutrient for animals, given its ability to complex proteins and minerals, despite its antioxidant and anticarcinogenic properties. However, phytate synthesis is still poorly understood, both in terms of its regulation and metabolic route, and relatively few works have addressed the control mechanism of phytate accumulation during seed development. Aiming at understanding the control mechanism of phytate synthesis, we examined myo-inositol-3-phosphate synthase (MIPS) (EC 5.5.1.4) activity and gene expression during seed development of common bean. Phytate concentration was low at the initial stage of seed development, coinciding with a period of the most intense seed metabolism, but followed by a period of high enzymatic activity and gene expression of MIPS when a decrease in its specific activity and transcription was detected throughout seed development until 20 days after flowering; however, the specific activity of MIPS dropped more expressively than the gene expression, matching with higher phytate concentration. Hence, we show that there is evidence of one control point regulating phytate synthesis with MIPS enzyme.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.