Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This research was conducted to screen various treatments of selenium (Se) and/or salicylic acid (SA) to mitigate signs of salinity on soybean. Seedlings were treated with three concentrations of Se (0, 25 and 50 mg l⁻¹), two concentrations of SA (0 and 0.5 mM) and/ or two concentrations of NaCl (0 and 100 mM). Se and/or SA had significant enhancing and alleviating effects on the chlorophyll a (Chl a) and carotenoid contents as well as, Chl a/b in the treated plants, but had adverse effects on the Chl b concentrations. The limiting effects of salinity on leaf area and dry mass were significantly eased by the Se and/or SA among which 25 mg l⁻¹ Se and combined treatment of 50 mg l⁻¹ Se and SA were the most effective. The utilization of Se and/or SA led to the improved proline and Mg contents, compared to the control. The supplemented Se and/or SA, especially the mixed ones, resulted in a significant decrease in Na/K ratios. Se and/or SA had significant inducing effects on enzymatic (peroxidase, catalase and superoxide dismutase) and non-enzymatic (ascorbate) antioxidant system. On the basis of the obtained results, it could be stated that the foliar utilization of Se in combination with SA may be used to relieve the signs of salinity stress.
The objective of the present work was to study biochemical alterations in lime plants infected by the Candidatus Phytoplasma aurantifoliae. Changes in antioxidant activities, content of chlorophylls (Chl), carotenoids (Car), soluble proteins, sugars and auxin (IAA) in infected plant were investigated. The activities of polyphenol oxidase (PPO), peroxidase (POX) and superoxide dismutase (SOD) were observed to be greater in infected leaves than the healthy control. Also according to nondenaturing PAGE, in infected leaves all the antioxidative enzymes isoforms were stronger than that of the healthy control. These results suggest that antioxidant enzymes can be activated in response to infection by phytoplasma. The decrease in content of proteins, total soluble and reducing sugars in infected plants point out changes in host metabolism due to the phytoplasma infection. The reduction in chlorophylls and auxin content shows that the phytoplasma can interfere in photosynthesis and induces senescence in the leaf. In conclusion, this study provides new insights into the lime response to phytoplasma infection.
The effects of salt stress on growth parameters, free proline content, ion accumulation, lipid peroxidation, and several antioxidative enzymes activities were investigated in S. persica and S. europaea. The seedlings were grown for 2 months in half-strength Hoagland solution and treated with different concentrations of NaCl (0, 85, 170, 340, and 510 mM) for 21 days. The fresh and dry weights of both species increased significantly at 85 and 170 mM NaCl and decreased at higher concentrations. Salinity increased proline content in both the species as compared to that of control. Sodium (Na⁺) content in roots and shoots increased, whereas K⁺ and Pi content in both organs decreased. At all NaCl concentrations, the total amounts of Na⁺ and K⁺ were higher in shoots than in roots. Malondialdehyde (MDA) content declined at moderate NaCl concentrations (85 and 170 mM) and increased at higher levels. With increased salinity, superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GPX) activities also increased gradually in both species. In addition, it seems that GPX, CAT, and SOD activities play an essential protective role in the scavenging reactive oxygen species (ROS) in both species. Native polyacrylamide gel electrophoresis (PAGE) indicated different isoform profiles between S. persica and S. europaea concerning antioxidant enzymes. These results showed that S. persica exhibits a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea possibly by maintaining and/or increasing growth parameters, ion accumulation, and antioxidant enzyme activities.
The hemibiotrophic pathogen Fusarium culmorum (Fc) causes crown and root rot (CRR) in wheat. In this study, MeJA treatment was done 6 h after pathogen inoculation (hai) to focus the physiological and biochemical responses in root tissue of the susceptible wheat cv Falat, partially resistant cv Pishtaz and the tolerant cv Sumai3 at the beginning of the necrotrophic stage. The results indicate that treatment with MeJA at 6 hai significantly delayed the necrotic progress in cv Falat, whereas no significant difference was seen in other cultivars. The activities of pathogen responsive defense-related enzymes (SOD, CAT, POX, PPO, LOX and PAL), total phenols and callose contents were higher in Sumai3, while treatment with MeJA significantly increased these enzymes activities and total phenols content in Falat, signifying the most sensitive cultivar which had a weak reaction to the pathogen but a strong response to MeJA treatment. Additionally, MeJA treatment decreased the level of H2O2 and MDA contents particularly in cv Falat. This is the first work reporting the regulation of defense-related enzymes by MeJA treatment at particular time point of 6 hai suggests the possible role of JA in regulating basal resistance in CRR pathogen–wheat interaction. Taken together, our data add new insights into the mechanism of wheat defense including enzymatic events controlling wheat protection against Fc infection.
Effect of penconazole (PEN) on the expression level of two genes in the biosynthesis pathway of monoterpenes, isopiperitenone reductase (iPR) and pulegone reductase (PR), and essential oil (EO) compounds were studied at flowering stage of Mentha pulegium L. under drought stress. Plants were grown with different levels of field capacity (100 and 50 %) with or without PEN (15 mg l⁻¹). Results showed that drought stress decreased the growth and productivity parameters. PEN treatment to drought-stressed plants decreased the negative effects of drought stress on these parameters. The EO yield increased by about 1.6 times under drought stress, and the highest amount of EO was obtained in drought-stressed with PEN. Drought stress increased pulegone and decreased menthone percentage, and the highest pulegone percentage (78.2 % of total constituents) was obtained in drought-stressed with PEN treatment. Semi-quantitative RT-PCR showed drought stress increased the expression level of iPR and PR genes. PEN treatment promoted the impact of drought stress on iPR gene expression and repressed PR gene expression. Our results suggest that PEN may be a useful tool for the regulation of monoterpene metabolism in M. pulegium under stress condition.
The effects of penconazole (PEN) on physiological parameters and several antioxidative enzyme activities were investigated in pennyroyal (Mentha pulegium L.) under water deficit stress. Six weeks after sowing, plants were grown under soil moisture corresponding to 100, 75, 50, and 25% field capacity (FC) with or without PEN (15 mg l⁻¹) for next 4 weeks. The exogenous application of PEN to droughtstressed plants increased some growth parameters, the relative water content (RWC), lipid peroxidation, electrolyte leakage, H₂O₂ content, activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO), and the total phenol content. Native polyacrylamide gel electrophoresis (PAGE) indicated different isoform profiles under water deficit stress in non-PEN-treated and PEN-treated plants concerning antioxidant enzymes. A higher capacity for oxygen scavenging and phenolic content could possibly explain the ability of M. pulegium plants to grow at higher water stress under PEN treatment.
Dehydrins are one of the characteristic families of plant proteins that usually accumulate in response to drought. In the present study, gene expressions of dehydrin multigene family (13 genes) were examined in flag leaves of tolerant (Yousef) and susceptible (Moroco) barley varieties under terminal drought to characterize the involvement of dehydrins in the adaptive processes. The stomatal conductance, RWC, and Chl a, b contents had more reduction in Moroco than the Yousef which has more elevated osmotic adjustment. Drought stress increased significantly MDA and electrolyte leakage levels, but greater in Moroco, indicating a poor protection of cell and cytoplasmic membrane in this variety. Yousef variety had no reduction in grain yield under drought condition. Five genes (Dhn1, Dhn3, Dhn5, Dhn7 and Dhn9) were exclusively induced in Yousef under drought stress. In the stress condition, relative gene expression of Dhn3, Dhn9 had the direct correlations (P\0.05) with Chl a, b contents, osmotic adjustment, stomatal conductance, plant biomass and grain yield, and the negative correlations (P\0.05) with MDA and electrolyte leakage levels. The results supported the impending functional roles of dehydrin Kn and particularly YnSKn types in dehydration tolerance of barley during the reproductive stage.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.