Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 51

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Seed dispersal distance is influenced by a variety of seed properties and functional responses of dispersers. However, to our knowledge, how and why seed dispersal distances are determined remains poorly understood. In the present study, seeds of sympatric tree species, Pinus koraiensis, Corylus mandshurica, Corylus heterophylla, and Quercus mongolica were released to investigate the effects of rodent abundance, seed type, and seed availability on seed dispersal. Our results showed that seeds of P. koraiensis were dispersed further than those of C. heterophylla and C. mandshurica regardless of the ambient rodent and seed abundances, reflecting a consistent effect of seed type on seed dispersal distances. Seed dispersal distance was greatly facilitated by lower per-capita seed abundance (the ratio of seeds to rodents); however, seed caching and cache survival were benefited from higher per-capita seed abundance. Although seed dispersal and seed caching of a particular tree species can be enhanced by its own seed availability, no consistent influence was detected at interspecific levels, reflecting different interspecific effects of seed availability on seed dispersal of sympatric seed species. Our results provide evidences that the effect of seed availability on seed dispersal should be evaluated in terms of per-capita seed abundance and interspecific effects, rather than the independent influence of seed or disperser abundances.
A PR10 gene (ThPR10) was cloned from Tamarix hispida and characterized. Real-time RT-PCR was employed to evaluate gene expression levels. ThPR10 was expressed in both leaves and roots of T. hispida under normal growth conditions, and can be highly induced in both leaf and root tissues by abiotic stresses including NaCl, PEG, cold, CdCl2, and ABA (abscisic acid) treatments. Our results indicated that ThPR10 is involved in the abiotic stress response, and regulated by an ABA-dependent signaling pathway. Subsequently, ThPR10 was localized at the subcellular level. The gene was fused with the GFP N-terminal driven by CaMV35S promoter and transiently expressed in onion epidermal cells. This strategy localized the ThPR10 protein to the nucleus of onion epidermal cells, suggesting that the pathogenesis-related proteins play a functional role in the cell nucleus.
Breeding scientists have given extensive attention to triploids in trees because of their importance to forestry. Consequently, creating and breeding triploids of good quality has become one of purposes of tree breeding. We chose two autotetraploids (Betula platyphylla, named Q10 and Q65) as female parents and eight hybrid diploids (B. platyphylla × B. pendula, named F1 – F8) as male parents to obtain progenies through controllable pollination, resulting in triploid progenies. Germination rate and germination energy of triploid seeds of Q65 were significantly higher (P < 0.01) than in triploid seed s of Q10. Triploid families with Q65 as female parent had a large quantity of saplings, whereas triploid families with Q10 as female parent had a small quantity of saplings. Triploid families with Q65 as female parent were generally superior in base diameter and height to base diameter ratio when compared to a diploid family. Q65×F3 was preliminarily recognized as the superior family. These results demonstrate that the female parent has a major influence on triploid progenies, although the male parent also has a small influence. The results provided a reference to build seed orchards of triploid birch trees, choose tetraploids as female parents and forecast triploid families of good quality.
Increased nitrogen (N) and water availability, resulting from global changes or ecosystem management, were predicted to promote plant productivity and change community composition through shifts in competition hierarchies. So far, however, it still remains unclear how competitive interactions respond to N and water additions, which will be important to understand how plant community composition changes. To test plant competition ability in different successional stages under N and water addition treatments, a pot experiment under field conditions was performed. Six dominant plant species, three early-successional species, Artemisia lavandulaefolia, Artemisia capillaris, and Pennisetum centrasiaticum versus three late-successional species, Stipa krylovii, Leymus chinensis, and Artemisia frigida, were grown in monocultures and in two-species mixtures under factorial combinations of N and water addition treatments. We found that (1) there were interactive effects of N addition, water addition and interspecific competition on plant biomass; (2) For a given species, competitive abilities were correlated with biomass difference of neighboring species; (3) N and water additions interactively increased competition intensity and shifted species competitive hierarchies; (4) Late- successional species had stronger competitive abilities in the N addition treatment, whereas early-successional species had stronger competitive abilities after water addition or N + water addition. Our results show that N and water additions increased the intensity and impact of interspecific competition on plant growth, which has great implications for community structures. Since interspecific differences in competitive abilities were not well explained by species biomass, species identity, such as plant functional traits, should be included to predict the impact of increased N and water availability on plant communities and ecosystem functions.
Although irrigation and temperature are predominant factors in tomato productivity in greenhouses, there is a lack of information on how these factors interact. Here, we examined single-factor responses and the interaction of three levels of irrigation (80, 100 and 120% of evapotranspiration) and two temperatures (normal temperature range of 13–30 °C and chilling temperature range of 4–24 °C) on growth, gas exchange, and antioxidant metabolism in relation to water uptake of pot-grown tomato plants (Solanum lycopersicum L. ‘No. 1 Jinpeng’). Lower growth was observed with the 80 and 120% irrigation levels than with the 100% treatment. Our results suggest that irrigation at 100% of evapotranspiration is the optimal level for ameliorating the chilling sensitivity of tomato, because this level of irrigation may enhance relative water content as well as nitrogen content to maintain the photosynthesis rate and reduce the damage to cells by reactive oxygen species (ROS). The adverse effects of 80 and 120% levels of irrigation might be attributable to a decreased photosynthesis rate and increased ROS accumulation, which would result in increased cell damage. Therefore, the use of irrigation at 100% of evapotranspiration is the best choice to support the acclimatization of tomato seedlings to chilling temperatures.
The hilly region of the Sichuan basin has unique natural topography, geomorphology, geology, and hydrology, with intensive human activities in the area. Therefore, it is of great significance to carry out research on heavy metal characteristics. In this study, taking five villages of Zigong city as a sample, the content of eight kinds of heavy metals in soil was determined (Cu, Cd, As, Pb, Cr, Zc, Ni, and Hg) based on ordinary Kriging. The results showed that Cd, Pb, Ni, and Zn content in the research area was higher than the background value and had a good concentration with all of the heavy metal contents lying within the national standards. Through soil parent material, soil environment, atmospheric environment, and water environment analysis of heavy metals, it was found that higher levels of heavy metals in the research area were mainly affected by agricultural and industrial activities (atmospheric dustfall). This was generally where there were intense areas of human activity – especially in and around transport routes and construction areas. It was also found that the soybean crop exhibited a strong Cd accumulation ability. This soybean planting should be reduced to control the distribution of Cd. Zn and Cu had a positive enrichment effect on rice, soybeans, and other crops, and had little enrichment effect on grapefruit. This study showed the effect human activities have on the quality of soil quality on the crop. This research has great significance for the ecologically sustainable development of society.
To realize “seamless” connection of ocean port container multimodal transport, efficiently carry out “door-to-door” transport of ocean port containers and overcome the shortcomings of existing highway and railway vehicles, this study takes the standard for heavy-duty container vehicles in TB1335-1996 Railway Vehicle Strength Design and Test Identification Code as the design basis and designs a new ocean port container transport vehicle in combination with automatic guidance technology. This study innovatively designs the automatic lifting system of the bogie and the docking part of the vehicle, introduces the automatic guidance technology and the remote-control technology to optimize the car body structure, and uses the SAP software to carry out the finite element analysis of the car body load capacity and Flexsim software to carry out the simulation analysis on the operation of vehicles. The designed transfer vehicle can improve the transfer efficiency of ocean port containers, reduce the transit time of field and station equipment and container transport links, and improve the level of multimodal transport and comprehensive economic benefits
Distribution and expression of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in different breeds and tissues of pigs were studied by means of immunohistochemical and RT-PCR methods.Three Huai and three Landrace pigs each were individually housed at the Fujian Shanghang Huai pig breeding farm under similar feeding conditions. Pigs were humanely slaughtered at saleable weight and samples of kidney, liver and skeletal muscle were collected for expression analyses.HMGR mRNA expressions in liver, muscle and kidney of Huai pigs both occurred higher than expression found in the Landrace. Positive staining of HMGR protein was revealed in the three tissues considered. The HMGR protein expression level was not significant statistically in liver,muscle and kidney across two breeds, but the amount of Huai pig HMGR protein expressed in three tissues was higher than that of the Landrace. The level of HMGR protein expression in liver was higher than in the muscle and renal tissues (P<0.05). The results demonstrate that HMGR expression in pigs may depend on tissue and species.
This paper analyzes the requirements of the information transmission network of ship integrated condition monitoring system, and proposes a design scheme of ship condition monitoring system based on wireless ad hoc network. The wireless ad hoc network protocol was designed, its networking process was analyzed in detail, and the network transmission performance of the monitoring system was tested. The results proved the feasibility of the system. The above solution can be used for the transmission of ship state information that satisfies the requirements of wireless transmission, and has important theoretical and practical significance. The slot allocation algorithm has been receiving extensive attention as an important part of the TDMA system research. This paper analyzes the summarization and summarization of TDMA time slot assignment algorithms from several aspects such as slot synchronization, existing slot allocation algorithm, and slot assignment model, laying an important foundation for researchers to do further research. In the TDMA system, time is divided into non-overlapping time frames, and the time frames are divided into non-overlapping time slots. Each node in the network performs corresponding operations in each time slot
Background: It has been reported that the expression of activating transcription factor 3 (ATF3) is closely associated with both microRNA (miRNA) processing and the progress of many cancers. Our study aimed to explore the interaction between ATF3 and miR-488 in tongue squamous cell carcinoma (TSCC). Methods: Quantitative real-time PCR was performed to detect the levels of ATF3 and miR-488 in TSCC tissues and cell lines. Cell invasion and epithelial–mesenchymal transition (EMT) were assessed to determine the biological functions of miR-488 and ATF3 in TSCC cells. The mRNA and protein levels of ATF3 were measured using quantitative RT-PCR and western blotting. Luciferase assays were performed to validate ATF3 as an miR-488 target in TSCC cells. Results: We found that the level of miR-488 significantly decreased and the expression of ATF3 significantly increased in TSCC tissues and cell lines. A low level of miR-488 was closely associated with increased expression of ATF3 in TSCC tissues. Introducing miR-488 significantly inhibited the invasion and EMT of TSCC cells, and knockdown of miR-488 promoted both processes. The bioinformatics analysis predicted that ATF3 is a potential target gene of miR-488. The luciferase reporter assay showed that miR-488 could directly target ATF3. ATF3 silencing had similar effects to miR-488 overexpression on TSCC cells. Overexpression of ATF3 in TSCC cells partially reversed the inhibitory effects of the miR-488 mimic. Conclusion: miR-488 inhibited cell invasion and EMT of TSCC cells by directly downregulating ATF3 expression.
As an important non-wood forest product and wood substitute, Moso bamboo grows extremely rapidly and hence acquires large quantities of nutrients from the soil. With regard to litter decomposition, N and P release in Moso bamboo forests is undoubtedly important; however, to date, no comprehensive analysis has been conducted. Here, we chose two dominant species (i.e., Cunninghamia lanceolata and Phoebe bournei), in addition to Moso bamboo, which are widely distributed in subtropical southeastern China, and created five leaf litter mixtures (PE100, PE80PB20, PE80CL20, PE50PB50 and PE50CL50) to investigate species effects on leaf litter decomposition and nutrient release (N and P) via the litterbag method. Over a one-year incubation experiment, mass loss varied significantly with litter type (P < 0.05). The litter mixtures containing the higher proportions (>80%) of Moso bamboo decomposed faster; the remaining litter compositions followed Olson's decay mode well (R2 > 0.94, P < 0.001). N and P had different patterns of release; overall, N showed great temporal variation, while P was released from the litter continually. The mixture of Moso bamboo and Phoebe bournei (PE80PB20 and PE50PB50) showed significantly faster P release compared to the other three types, but there was no significant difference in N release. Litter decomposition and P release were related to initial litter C/N ratio, C/P ratio, and/or C content, while no significant relationship between N release and initial stoichiometric ratios was found. The Moso bamboo-Phoebe bournei (i.e., bamboo-broadleaved) mixture appeared to be the best choice for nutrient return and thus productivity and maintenance of Moso bamboo in this region.
To assess the erosion resistance of soils beneath Robinia pseudoacacia (Robinia), soil anti-scouribility (AS) and its relevant structural properties in an age sequence of 4-, 11-, 24-, 37-, and 43-year-old Robinia, lands and one adjacent cropland (CK) were studied through a simulated flow scouring experiment on a hilly Loess Plateau. Soils from the six-stage Robinia planting were hypothesized to differ in their resistance to scouring, and these differences are believed to be related to differences in their soil physical properties. The results showed that: 1) Robinia planting significantly reduced sediment compared with CK. Changes in the sediment over scouring time were best described by a negatively exponential function. 2) Compared with CK, the average soil bulk density beneath Robinia significantly decreased by 14.5% in the surface (0-20 cm) soil layer and non-significantly by 5.7 and 3.3% in the middle (20-40 cm) and lower (40-60 cm) soil layers, respectively. Soil aggregate content and shear strength increased while soil disintegration rate decreased significantly in the three soil layers with Robinia stages. Mean 6.8, 1.6, and 0.2 times were increased in soil AS. 3) Linear regression equations between soil AS and the soil structural properties were well fitted in the surface and middle soil layers. Soil aggregate content and root biomass were the key factors, which contributed 71.0 and 90.8% to the reinforcement of soil AS beneath Robinia in the hilly Loess Plateau.
With the development of DC distribution system within the isolated power system of a ship or an aircraft, more constant frequency loads will be supplied by inverters connected to DC main bus. In the operating mode conversion process of an isolated power system, inverters will inevitably suffer from serious disturbance and affect the stability of the system. Therefore, it is important to establish a model of the inverter that reflects its dynamic characteristics and based on which to conduct the stability analysis. This paper proposes a 12-pulse inverter model based on the generalized state space averaging (GSSA) method. This model can overcome the limitations of 12-pulse inverter state space averaging (SSA) model in transient analysis with good accuracy and fast analysis ability effectively. Three kinds of models for a 12-pulse aircraft inverter are built in MATLAB, namely GSSA model, SSA model and detail device model. The simulation results show the high accuracy of GSSA model in stability analysis. This study provides an effective analytical tool for stability analysis of 12-pulse inverter and also provides a reference for inverter modeling research of isolated power system such as in aircraft or ship
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.