Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Scientists employing methods of genetic engineering have developed a new group of living organisms, termed ‘modified organisms’, which found application in, among others, medicine, the pharmaceutical industry and food distribution. The introduction of transgenic products to the food market resulted in them becoming a controversial topic, with their proponents and contestants. The presented study aims to systematize objective data on the potential benefits and risks resulting from the consumption of transgenic food. Genetic modifications of plants and animals are justified by the potential for improvement of the food situation worldwide, an increase in yield crops, an increase in the nutritional value of food, and the development of pharmaceutical preparations of proven clinical significance. In the opinions of critics, however, transgenic food may unfavourably affect the health of consumers. Therefore, particular attention was devoted to the short- and long-lasting undesirable effects, such as alimentary allergies, synthesis of toxic agents or resistance to antibiotics. Examples arguing for the justified character of genetic modifications and cases proving that their use can be dangerous are innumerable. In view of the presented facts, however, complex studies are indispensable which, in a reliable way, evaluate effects linked to the consumption of food produced with the application of genetic engineering techniques. Whether one backs up or negates transgenic products, the choice between traditional and non-conventional food remains to be decided exclusively by the consumers.
STATs (signal transducers and activators of transcription) are latent transcription factors present in the cytoplasm of the majority of animal cells. They are activated by tyrosine phosphorylation and then translocated to the nucleus where they induce transcription of target genes. The STAT5A factor mediates the actions of cytokines and peptide hormones, including prolactin and growth hormone. STAT5A, previously known as MGF (mammary gland factor), is the most important transcription factor mediating the action of ligands on the expression of genes responsible for production traits in cattle.
Analizowano zależności pomiędzy polimorfizmem GH/HaeII a cechami użytkowości tucznej i rzeźnej tuczników. DNA do badań izolowano z pełnej krwi 369 tuczników należących do pięciu grup rasowych: Landrace, Landrace x Duroc, Landrace x Yorkshire, (Landrace x Yorkshire) x Duroc, (Landrace x Yorkshire ) x (Duroc x Pietrain). Częstość występowania alleli polimorfizmu GH/HaeII wynosiła odpowiednio: A – 0,168 i C – 0,832. Porównując liczebności obserwowane w grupach genotypowych GH/HaeII z liczebnościami teoretycznie skalkulowanymi zgodnie z regułą Hardy’ego-Weinberga nie stwierdzono różnic statystycznie istotnych. Wykazano istotny statystycznie wpływ grupy rasowej na badane cechy użytkowości tucznej i rzeźnej oraz wykazano statystycznie istotną interakcję między grupą rasową a polimorfizmem GH/HaeII dla tempa wzrostu tuczników. Wykazano, że sam polimorfizm GH/HaeII nie różnicował w sposób statystycznie istotny żadnej z analizowanych cech użytkowości tucznej i rzeźnej badanej grupy tuczników.
7
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

The merits of fat replacers in low-calorie food

88%
Carbohydrate and protein replacers of fat are frequently used by food manufacturers in response to the increased risk of diseases, which are connected with oversupply of energy and lipids in the diet. Low-calorie replacers such as inulin can limit hunger and normalize blood cholesterol levels. Increases in the nutritional value of food products can be achieved by partially replacing fat by soy protein isolates. Amino acids and deficient minerals like calcium and iron can be provided by food containing protein-based fat substitutes. Some fat substitutes, like maltodextrin, can slightly reduce the bioavailability of the fat-soluble vitamins. As a result, food products containing maltodextrin should be fortified with the affected substances to reduce the risk of malnutrition. The long-term effects of carbohydrate and protein replacers on the human body have not been sufficiently explained, and so fat replacers should be limited in the daily diet.
Aging is accompanied by a high level of oxidized form of guanine, 8-oxo-2’deoxyguanosine (8-oxo-2’dG), and decreased level of 8-oxoguanine glycosylase 1 (OGG1) in the brain. The development and progression of neurodegenerative disorders are also characterized by dysfunction or loss of the brain nicotinic acetylcholine receptors (nAChRs). To study whether the differences in nAChRs expression in the rat brain occur due to aging or oxidative stress we analyzed RNA and protein levels of α7, α4 and β2 subunits by RQ-PCR and Western blot validation in three brain structures: cerebral grey matter (CGM), sub-cortical white matter (SCWM) and cerebellum (Ce) of twenty one female Wistar rats. The first group consisted of five 3.0–3.5-month-old females, which was assigned as a young control group. The remaining sixteen females aged of 18–24 month were divided into three following groups: (1) aged control group of 5 rats; (2) a vehicle group of 5 rats which received intraperitoneal injections of deionized water; (3) memantine-treated group of 6 rats. In each group, the selected brain areas have also been analyzed to determinate the levels of oxidative stress. In this study, age- and stress- dependent differential RNA and protein expression levels were approved only in OGG1 and α7 nAChR proteins. In all analyzed brain structures of young and old controls, the levels of oxidized form of guanine were similar. Stress relevant to water injection increased the level of 8-oxo-2’dG in the cerebellum of old control rats (Ce, P<0.05). The old controls demonstrated an important reduction of OGG1 mRNA expression in CGM and Ce regions compared to young individuals (CGM P=0.03; Ce P=0.2). Western blot analysis has also revealed a reduction of OGG1 protein in the sub-cortical white matter of old individuals (SCWM, P=0.03). However, there was no important influence of water administration on OGG1 expression in all brain regions. In all analyzed brain structures, expression of α7 nAChR was down-regulated in old controls compared to young controls. However, this decrease was only significant in SCWM area (SCWM, P<0.05). Treatment with H2O caused a significant increase in RNA and protein levels of α7 nAChR in SCWM as compared to this brain structure of the aged control rats (SCWM, P<0.01). Our results suggest that aging of the rat brain is mostly associated with decreased expression of OGG1 as well as with deficit of α7 nAChR in the sub-cortical white matter. Stress relevant to water injection increases the level of 8-oxo-2’dG in the aging rat brain, but clearly overcomes the α7 nAChR deficit. A significant increase of the α7 nAChR expression in the SCWM of H2O-treated rats suggests that these receptors play an important role in compensatory mechanisms facilitating the impaired cholinergic neurotransmission following oxidative stress in the aging rat brain.
Memantine (MEM) is a potent open channel blocker of N-methyl-Daspartate receptors (NMDARs), and primary has been developed for treatment of neuropathic pain, symptoms of dementia and AD. On the other hand, MEM is able to act as an open channel blocker on several other ligand gated ion channels, e.g., the α4β2 and α7 nicotinic acetylcholine receptors (nAChRs). The aged-related decline in the nAChRs expression could be associated with other senescence markers, such as increased oxidative stress leading to oxidative DNA changes (high level of 8-oxo-2’dG), accompanied with significant decrease in level of the OGG1 protein involved in DNA repair process. To study whether MEM treatment might influence on the α7 and α4 nAChRs expression in the aging rat brain tissues, we analyzed RNA and protein levels by RQ-PCR and Western blot validation in three brain structures: cerebral grey matter (CGM), sub-cortical white matter (SCWM) and cerebellum (Ce) of twenty one female Wistar rats. The animals were divided into following experimental groups: the first group consisted of five 3.0–3.5-month-old females, which was assigned as a young control group, and the remaining sixteen females aged of 18–24 month were divided into three following sub-groups: (1) aged control group of 5 rats; (2) a vehicle group of 5 rats which received intraperitoneal injections of deionized water (3) memantine-treated group of 6 rats. In each group, the selected brain areas have also been analyzed to determinate the levels of oxidative stress. In CGM and SCWM brain structures the level of 8-oxo-2’dG was significantly reduced in old rats after MEM administration (CGM P=0.05; SCWM P<0.05). Western blot analysis has also revealed a significant up-regulation of OGG1 level in CGM after MEM administration (CGM P=0.05). MEM specifically up-regulated mRNA level of cortical α4 subunit in the CGM region of aging rat brain (CGM, P<0.05). In the sub-cortical white matter an important increase of α7 mRNA level has been observed after MEM administration (SCWM P<0.05). The level of α7 nAChR protein was significantly up-regulated also in CGM and Ce regions of MEM treated rats (SCWM P=0.05; CGM P<0.05; Ce P<0.05). We demonstrated that processes related to aging, such as a decreases in OGG1 and nAChRs expression can be modified after memantine administration: (1) A significant increase in the CGM of α4 and α7 subunits, as well as up-regulated α7 level in the SCWM after MEM administration suggests that nAChRs play an important role in compensatory mechanisms facilitating the impaired cholinergic neurotransmission following treatment with MEM. (2) MEM significantly up-regulates cortical OGG1 protein expression and reduces the level of 8-oxo-2’dG in CGM. (3) A significant increase in both mRNA and protein levels of α7 nAChR along with reduction of 8-oxo-2’dG in SCWM, following treatment with MEM, suggests that the effect of MEM on cholinergic function may be associated with antioxidant mechanisms. Whether these protective effects of MEM are direct or are mechanistically remote from NMDARs antagonism, have to be evaluated in the further studies.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.