Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 20

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Nicotine is the major alkaloid in tobacco and its biosynthesis is regulated by a variety of factors. Topping, as an important agronomic factor, can induce the nicotine biosynthesis increase. Some key nicotine biosynthesisrelated genes and the framework of nicotine biosynthesis pathway have been well studied, but the details of nicotine biosynthesis pathway are not well understood now. To investigate the genes expressed after tobacco topping, we constructed a suppression subtractive hybridization library using cDNA from control tobacco plants as driver and those from topped tobacco plants as tester. The insert size of positive clones was 200–1,000 bp confirmed by PCR. After differential screening, 560 significantly differently expressed clones among 1,950 positive clones were acquired, sequenced and 273 high quality expressed sequence tags (ESTs) were acquired. The results of nucleotide blast homological analysis indicated that these ESTs mainly involved in alkaloid biosynthesis (4%), plant hormone metabolism (3%), signaling/transcription (18%), stress/ defense (32%), protein metabolism (9%), carbon metabolism (6%), other metabolism (15%) and function unknown (13%). The expression of selected genes was analyzed by reverse transcription polymerase chain reaction and RNA gel blot hybridization, and the result indicated that their transcription amount increased after tobacco topping. NtNAC-R1was in silico cloned, and the expression level of NtNAC-R1 increased at 12 and 24 h in tobacco roots after topping, which indicated that NtNAC-R1 may play an important role in the signal transduction after tobacco topping. In addition to many previously reported nicotine biosynthesis-related genes, some new genes, such as transcription factors related to nicotine biosynthesis/regulation and the members of plant hormone pathway, were discovered in our library. The results contribute new data to the list of possible candidate genes involved in nicotine biosynthesis and regulation.
Winter injury is frequently observed in the rare species Magnolia wufengensis L.Y. Ma et L.R. Wang, but rarely in Magnolia denudata Desr in northern China. To improve the understanding of the causes for poor winter hardiness of M. wufengensis, the physiological and biochemical processes of M. denudata and M. Wufengensis during natural cold acclimation and deacclimation were investigated and compared. In early cold acclimation, the growth cessation of M. wufengensis was later than that of M. denudata, and the leaf senescence was also slower in M. wufengensis. Both the bud dormancy level and shoot freezing tolerance were lower in M. wufengensis throughout cold acclimation and deacclimation. A significant development in bud dormancy level and shoot freezing tolerance appeared long after growth cessation for M. wufengensis but soon for M. denudata. The increase rates of dormancy level and freezing tolerance during cold acclimation were lower in M. wufengensis, while the corresponding decrease rates of these two parameters during deacclimation were also lower in M. wufengensis. The interspecific differences in freezing tolerance highly correlated with the dehydration and accumulation of proline and certain soluble sugars. We conclude that weaker mid-winter cold hardiness and slower cold acclimation should be the reasons for poorer winter hardiness in M. wufengensis.
Anaerobic ammonium oxidation (anammox) is an efficient and promising pathway for nitrogen removal from wastewater, but its application is usually confined by the low growth rate and susceptibility to surroundings of anammox bacteria. In this study, cultured anammox sludge was immobilized using polyvinyl alcohol (PVA)-sodium alginate (SA) gel and put into a lab-scale column reactor at a packing ratio of 20%, and nitrogen removal performance was evaluated at two hydraulic retention times (HRTs). Anammox was rapidly initiated in the reactor, with ammonium and nitrite removal efficiency reaching 82.3% and 84.7% after an operation period of 10 d. Nitrogen removal efficiency declined greatly after the reduction of HRT from 24 h to 12 h, but then recovered quickly, with an average TN removal rate of 84.5% and 0.43 kg·m⁻³·d⁻¹ achieved under the steady operational state. The immobilized anammox reactor performed significantly better and was more stable in nitrogen removal than that with anammox sludge inoculated directly, indicating the superiority of cell entrapment of anammox biomass in addition to its easy reservation. Nitrogen removal in the reactor increased after stable operation with the HRT. It has potential to apply immobilized anammox sludge entrapped by PVA-SA gel for the convenient establishment of an anammox reactor with stable and high nitrogen removal rates.
Grass carp (Ctenopharyngodon idella) play an important role in the ecological restoration of water bodies, and it is crucial to understand the mechanism behind this. An experiment was performed in tanks consisting of three treatments: 1) without fish (control treatment, CON), 2) with fish unable to feed on submerged macrophytes (excretion treatment, EXCR), and 3) with fish swimming free (herbivory plus excretion treatment, HERB-EXCR). Treatments were conducted with varying macrophytic compositions (Vallisneria natans (Lour.) Hara, Ceratophyllum demersum L., and both species) and carp densities (low, medium, and high: 0.15, 0.30, and 0.45 g·L⁻¹ respectively, in EXCR and HERB-EXCR). Results indicated that in EXCR and HERB-EXCR, water quality was better with a lower density of grass carp. In EXCR, the water quality in tanks with V. natans was worse than in other tanks, and water quality in C. demersum tanks was better under the HERB-EXCR treament. Compared to EXCR, grass carp in HERB-EXCR significantly increased concentrations of NH₄⁺-N, NO₂⁻-N, and chlorophyll a. The effects on biomasses of protozoa, copepods, and total zooplankton in HERB-EXCR were greater than in the other treatments. Integrated analysis showed that grass carp herbivory on submerged macrophytes could be the central mechanism accounting for the changes in water quality and zooplankton communities.
This study examined the population of Indo-Pacific humpback dolphins, Sousa chinensis, inhabiting the waters off the east coast of Zhanjiang, China. A total of 116 dolphins were identified during 147 boat-based surveys, completed between June 2005 and June 2007. Abundance estimates indicated that a small population of 268 dolphins (95% CI = 189–413) inhabited this coastal area. The sighting frequencies of identified dolphins varied between one and five when the 2006 and 2007 data were organized into six occasions. Twenty-three percent (27 individuals) of the cataloged dolphins were identified in more than one calendar year. The two animals (ZJ001, ZJ011) with the highest degree of site fidelity were present in the study area for a period of 23 months. The most frequently (15 times) sighted dolphin (ZJ046) was recorded in nine (56%) of the 16 months surveyed. This evidence indicates the interannual site fidelity of S. chinensis to the area off the eastern coast of Zhanjiang City. Range sizes of eight identified individuals calculated by the minimum convex polygon varied from 2.07 to 331.20 km2. Associations between 34 individuals sighted at least three times and more than three times were measured by the half-weight index and SOCPROG program. The majority of these dolphins (80.57%) were not seen together during surveys and the mean association rate between dyads was low at 0.05. Temporal analyses for all the individuals were conducted using a lagged association rate. The results indicated a non-random social structure made by constant companions.
Endogenous indole-3-acid (IAA) and zeatin (t-Z) may play important roles in the dwarfing mechanisms of rootstocks. The concentrations of IAA and t-Z, as well as the expression of the genes PIN1 and IPT3 were measured in leaves, barks, and roots from nine treatments: M9, Malus X micromalus Makino, Red Fuji/M9/Malus X micromalus, Red Fuji/M9, Red Fuji/Malus X micromalus, M9 rootstock substitution above and below the original graft union, interstock bridging, and interstock bark substitution of M9. The results show that there were greater amounts of t-Z and expressions of IPT3 in invigorated trees (Malus X micromalus and Red Fuji/Malus X micromalus) when compared with dwarfing trees (M9, Red Fuji/M9/Malus X micromalus and Red Fuji/M9) during the period of fast shoot growth (early June to mid-August). Moreover, the variation of IAA contents and PIN1 expressions shared the same pattern with t-Z contents and IPT3 expressions in all the tested locations. IAA content was extremely high in the bark of M9 interstock when compared with that of the scion and the rootstock, yet PIN1 expression in corresponding tissues was very low. After M9 rootstock were substituted above and below the original graft union, contents of t-Z, IAA, and PIN1 expressions in leaves and branch-barks recovered gradually to standard tree levels. However, there is no significant difference between the two treatments. We conclude graft union has no obvious influence on hormone transport. After M9 interstock and its bark were substituted, the hormone measurement of every index was consistent with that of rootstock substitution.
Yersinia species are bacterial pathogens that can cause plague and intestinal diseases after invading into human cells through the Three Secretion System (TTSS). The effect of pathogenesis is mediated by Yersinia outer proteins (Yop) and manifested as down-regulation of the cytokine genes expression by inhibiting nuclear factor-κ-gene binding (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In addition, its pathogenesis can also manipulate the disorder of host innate immune system and cell death such as apoptosis, pyroptosis, and autophagy. Among the Yersinia effector proteins, YopB and YopD assist the injection of other virulence effectors into the host cytoplasm, while YopE, YopH, YopJ, YopO, and YopT target on disrupting host cell signaling pathways in the host cytosols. Many efforts have been applied to reveal that intracellular proteins such as Rho-GTPase, and transmembrane receptors such as Toll-like receptors (TLRs) both play critical roles in Yersinia pathogenesis, establishing a connection between the pathogenic process and the signaling response. This review will mainly focus on how the effector proteins of Yersinia modulate the intrinsic signals in host cells and disturb the innate immunity of hosts through TTSS.
Four-year-old Gingko (Ginkgo biloba L.) trees were exposed to ambient and elevated concentrations of CO₂ and O₃, and their combination for 1 year, using opentop chambers in Shenyang, China in 2006. Growth parameters and endogenous plant hormones were measured simultaneously over the experiment period. Elevated CO₂ increased leaf area and leaf dry weight but had no effect on shoot length, increased indole-3-acetic acid (IAA), gibberellins A₃ (GA₃), zeatin riboside (ZR), dihydrozeatin (DHZR) and isopentenyl-adenosine (iPA) content but decreased abscisic acid (ABA) content. Elevated O₃ significantly decreased leaf area, leaf dry weight, shoot length, and decreased IAA, GA₃, ZR content but increased ABA content and had a little effect on iPA, DHZR content. Elevated CO₂ + O₃ decreased IAA, iPA and DHZR content while increased ABA and GA₃ content in the early stage of the exposure and then decreased in the late stage. The evidence from this study indicates that elevated CO₂ ameliorated the effects of elevated ozone on tree growth, and elevated CO₂ may have a largely positive impact on forest tree growth while elevated O₃ will likely have a negative impact.
The complete cDNA and deduced amino-acid sequences of ribosomal proteins L34 (AmphiL34) and S29 (AmphiS29) from the amphioxus Branchiostoma belcheri tsingtauense were identified in this study. The AmphiL34 cDNA is 435 nucleotides in length and encodes a 118 amino-acid protein with calculated molecular mass of 13.6 kDa. It shares 53.6-67.5% amino-acid sequence identity with its eukaryotic counterparts including human, mouse, rat, pig, frog, catfish, fruit fly, mosquito, armyworm, nematode and yeast. The AmphiS29 cDNA comprises 453 nucleotides and codes for a 56 amino-acid protein with a calculated molecular mass of 6.6 kDa. It shows 66.1-78.6% amino-acid sequence identity to eukaryotic S29 proteins from human, mouse, rat, pig, zebrafish, seahorse, fruit fly, nematode, sea hare and yeast. AmphiL34 contains a putative nucleolar localization signal, while AmphiS29 has a zinc finger-like domain. A phylogenetic tree deduced from the conserved sequences of AmphiL34 and AmphiS29 and other known counterparts indicates that the positions of AmphiL34/AmphiS29 are intermediate between the vertebrate and invertebrate L34/S29. Southern blot analysis demonstrates the presence of one copy of the L34 gene and 2-3 copies of the S29 gene in the genome of the amphioxus B. belcheri tsingtauense. This is in sharp contrast to the existence of 7-9 copies of the L34 gene and 14-17 copies of the S29 gene in the rat genome. These date suggest that housekeeping genes like AmphiL34 and AmphiS29 have undergone large-scale duplication in the chordate lineage.
Altered gene expression was associated with the induction and maintenance of hepatocellular carcinoma (HCC). To determine the significance of HCR2 in HCC, here we compare the expression levels of HCR2 in carcinoma and in paired non-carcinoma tissues using semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blot analysis, and immunohistochemical staining. The expression ratio (ER) of HCR2 between the tumor and paired tumor-free tissues was calculated for each case and the data was clinicopathologically analyzed. The expression of HCR2 mRNA was found to be significantly decreased in HCC tissues compared with paired normal tissues (P < 0.001). HCR2 was downregulated in 58% (n = 22) of 38 HCC patients. The ER of HCR2 was higher in Edmondson’s grade I/II carcinomas than that in Edmondson’s grade III/IV carcinomas (P < 0.05). Western blot analysis showed HCR2 to be notably depressed in carcinoma tissues in 3 out of 4 HCC patients. Immunohistochemical staining indicated most HCR2 protein accumulated in non-carcinoma cells. These results suggested that altered HCR2 expression might play roles in the carcinogenesis and progression of HCC, and it could be a clinical marker for prognosis, and a molecular target for screening potential anti-HCC drugs.
A semi-field test was conducted to assess the risk of exposure to fufenozide in a ditch and pond adjacent to an agricultural area. To support the investigation, a fast, highly selective, and sensitive method was developed to determine the residue of fufenozide in water, sediment, and soil through high performance liquid chromatography- tandem mass spectrometry. The recoveries were in the acceptable range of 85.6% to 99.3% in the three matrices, with the associated relative standard deviations at 1.2% to 7.8%. The results indicate that the surface water-sediment system could be exposed to fufenozide through runoff after application, which dissipated rapidly in the aquatic ecosystem. The toxicity exposure ratio showed no risk of fufenozide exposure to the fish in the aquatic ecosystem close to the agriculture field.
The nucleophosmin 1 gene (NPM1) encodes a multifunctional nucleolar phosphoprotein that plays a crucial role in the control of various aspects of cell growth and homeostasis. In this study, the coding region of the NPM1 gene was screened in 1035 individuals of 4 Chinese cattle breeds by DNA sequencing and Polyacrylamide gel electrophoresis. A novel 12-bp deletion mutation was identified in the coding region of the NPM1 gene. The PCR products of primer NPM1-P2 exhibited 3 genotypes and 2 alleles: 178 bp (denoted as W) and 166 bp (denoted as D). Genotype DD and allele D were predominant in the studied populations. Association analysis with growth traits in the Nanyang breed (N = 265) showed that the animals with genotype DD had significantly greater birth weight, body weight, body length, and heart girth than those with genotype WD (P <0.01 or P < 0.05) at birth and after 6 months and 12 months, but not at 18 and 24 months of age. Results of this study suggest that the NPM1 gene is a candidate gene for growth traits in cattle.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.